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ABSTRACT

Efficient supply chain design and operation are essential for manufacturing production. The
main stakeholders in a supply chain network include upstream suppliers, downstream customers
and competitors. Manufacturing plants acquire raw materials from upstream suppliers and convert
them to final products, which are shipped to downstream facilities such as distribution centers and
other manufacturing plants. At the strategic level, supply chain management involves designing the
configuration of the network, i.e., where to build manufacturing plants, warehouses and distribution
centers. At the tactical level, supply chain management involves purchasing raw materials from
upstream suppliers, production planning, distribution of products to downstream customers. At
the operational level, supply chain management involves demand fulfillment, inventory control and
transportation. In this dissertation, mathematical models have been formulated to study various
manufacturing supply chain problems, with a focus on decision making under uncertainties for
network design, production planning and closed-loop supply chain.

In the first paper, I proposed a novel two-stage stochastic programming model for relay network
infrastructure to improve work-life balance of truck drivers. Various valid inequalities have been
generated to enhance computational performance and results indicated that up to 30% computa-
tional time can be saved. The robustness of the model has been tested by generating scenarios and
checking the feasibility of the deterministic model. In addition, we identified the bottlenecks in the
system and provided insights on how to improve current network configuration.

In the second paper, I studied a lot-sizing and scheduling problem, which is at the tactical level of
supply chain management. Decisions include determining batch sizes and production sequences. A
multi-stage stochastic programming model has been developed. Scenario generation and reduction
have been used to generate scenarios and identify the most representative subset. A case study
based on a manufacturing firm has been conducted to illustrate and verify the model. Results show
that by using the multi-stage stochastic programming model, the objective values reduced by 10%
- 13% compared to the two-stage stochastic programming model.

In the third paper, I proposed a hybrid stochastic and robust optimization model for the lot-
sizing and scheduling problems. Different types of uncertainties (demand and overtime processing
cost) have been studied, simultaneously. I assumed there was not enough historical data for demand
and hence robust optimization was adopted to handle demand uncertainty. On the other hand,
I assumed there was sufficient historical data for overtime processing cost, therefore, stochastic
programming was used to handle overtime processing cost uncertainty. Various sensitivity analyses
have been conducted and results shown that considering uncertainties are very crucial since the
hybrid model outperformed the deterministic model in the objective values.

In the last paper, I studied a closed-loop supply chain problem which integrates network design
and production optimization. A fuzzy multi-objective mixed integer linear programming model
has been proposed. The two objective functions are minimization of overall system costs and
minimization of negative environmental impact. Several uncertain parameters are studied such as
demand, return, scrap rate, manufacturing cost and negative environmental factors. The original
model with uncertain parameters is firstly converted to a crisp model and then an aggregation
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function is applied to combine the objective functions. Sensitivity analyses on various parameters
have been examined.

In order to improve the data utilization and interpretation of outcomes, various statistical
methods such as Monte-Carlo simulation, moment matching method for scenario generation, and
Fast Forward Selection for scenario reduction are applied. The main goal of this dissertation is to
quantify the uncertainties in the supply chain design and operational planning processes. Insights
have been provided for decision makers in network design and production planning. The results
derived from this dissertation have the potential to contribute to the decision making processes
under uncertainties by providing analytic solutions for designing robust and efficient supply chain
networks.



www.manaraa.com

1

CHAPTER 1. GENERAL INTRODUCTION

1.1 Research background

A supply chain is a network of organizations that are involved, through upstream and down
stream connections, in the different processes that manufacture products delivered to the customers
(Christopher et al., 1991). According to a report by the Australian Securities and Investments
Commission, 44% of businesses in Australia failed because of poor strategic management. Another
survey by Deloitte indicates that 79% of companies with high-performing supply chains achieve
revenue growth superior to the average within their industries while only 8% of businesses with
low-performing supply chains report above-average growth. These highlight the importance of
supply chain design and management.

One of the biggest challenges in the supply chain is the design of network configuration. An
inefficient network system results in unnecessary capital investment and huge deadhead cost. Mele
(1989) observed that the turnover rate for long haul truck driver ranges from 85% to 110% per
year. By contrast, this number is much lower among local drivers. In addition, deadhead costs are
significant higher in the traditional point-to-point shipment. It is shown that trucks are completely
empty 25% of time and utilization is only 57%. Therefore, designing an efficient network becomes
very critical.

Production planning and scheduling has been proven to be one of the most challenging subjects
for supply chain management due to its model complexity (Drexl and Kimms, 1997). It appears
to be a hierarchical processes ranging from short-term, medium-term to long-term decisions. Our
focus is on the medium-term decision making processes which include lot-sizing and scheduling over
a finite planning horizon. Lot-sizing and scheduling problems determine the batch sizes as well as
production sequences for different products so as to minimize the overall cost and maximize the
profit. These specific types of integer programming formulations have been proven to be NP hard
and sequence dependent setups will bring even more computational challenges.

Closed-loop supply chain system has attracted increasing attention in the community of supply
chain management. It is the design, control, and operation of a system to maximize profit over
the entire life cycle of products (Guide Jr and Van Wassenhove, 2009). Unlike traditional supply
chain systems, environmental performance is typically considered in the closed-loop supply chain
management. Environmentally friendly materials and processes can be incorporated in the supply
chain system to realize a low carbon production system (Kumar and Kumar, 2013).

In summary, the four research studies in this dissertation focus on the different components of
a supply chain system. In the first paper, I studied a facility location design problem in which a
relay network without long distance shipments was provided. A two-stage stochastic programming
model with demand uncertainty was proposed. In the second paper, I studied a lot-sizing and
scheduling problem with demand uncertainty. A multi-stage stochastic programming model was
proposed. First two studies assume perfect information about uncertainty which can be unrealistic
in some cases. In the third paper, we proposed a hybrid stochastic and robust optimization model
for the lot-sizing and scheduling problems in which uncertain demand is handled by the robust
optimization due to lack of historical data. The last paper investigated a closed-loop supply chain
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problem in which returned products are collected and remanufactured. A fuzzy multi-objective
programming model was proposed to handle various uncertainties such as demand, return, scrap
rate, manufacturing cost and negative environmental impacts.

1.2 Literature review

An efficient and robust supply chain network can contribute to the competitiveness of a man-
ufacturing organization by reducing costs and mitigating risks. As pointed out by Klibi et al.
(2010), the configuration of a supply chain network is a critical decision, which will affect multiple
departments and functionalities, especially under uncertainties. On top of that, network planning
is a long term process in which decisions such as opening facility can be very time and resource
consuming. Therefore, the design of supply chain should be robust against uncertainties. In this
dissertation, I studied three topics in the scope of supply chain design (1) relay network design; (2)
lot-sizing and scheduling; (3) closed-loop supply chain. Different methods have been applied for
model formulation and analysis, including stochastic programming, robust optimization, and fuzzy
programming.

In the traditional supply chain network, point-to-point shipment is widely used regardless of
the distance between two nodes. This traditional transportation approach creates huge amount of
deadhead cost and high turnover rate. Unlike a traditional network, a relay network connects source
and sink with intermediate nodes whenever the distance between nodes is greater than the trans-
mission range. Üster and Kewcharoenwong (2011) designed a relay network system in truckload
transportation that potentially helped to alleviate the problem of high turnover rate. An efficient
Benders’ decomposition-based algorithm was developed. Kulturel-Konak and Konak (2008) studied
a network design problem with relay stations arises in telecommunication. An efficient hybrid meta-
heuristic approach was presented to solve large sized problems. Other approaches for solving relay
network design problems include benders decomposition, genetic algorithm, lagrangian heuristic
and branch-and-price (Konak, 2014; Yıldız et al., 2018; Kewcharoenwong and Üster, 2014). While
most of the current literature focused on developing heuristics, I proposed a novel mathematical
formulation for relay network design problems and improved the computational performance by
introducing various valid inequalities. Stochastic programming was applied to handle demand un-
certainty. A two-stage stochastic programming model was formulated to minimize transportation
cost, deadhead cost, penalty cost, and fixed cost. A case study on the highway network for the
Western United States demonstrated the computational tractability of the approach along with the
importance of considering demand uncertainty (Hu et al., 2019).

Another important component in supply chain design is production. Manufacturing firms can
experience various uncertainties both externally and internally. External uncertainties include lead
time, raw material quality, demand, etc. Internal uncertainties include efficiency, machines break
down and processing cost, etc. Lot-sizing and scheduling is a type of production problems in which
batch sizes and production sequences need to be determined. Two-stage stochastic programming
approaches have been widely studied for lot-sizing and scheduling problems (Hu and Hu, 2016;
Ramaraj et al., 2017; Li and Hu, 2017). The major motivation to use multi-stage stochastic pro-
gramming approach for lot-sizing and scheduling problems is that decision makers are usually able
to revise production plan at the beginning of each time period and make changes accordingly. In
the second paper, a multi-stage stochastic programming approach was proposed to address the
uncertain demand issue in a production scheduling problem. The major connection between the
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first and second papers, in terms of methodology, is that both papers adopt stochastic program-
ming method. As mentioned before, opening facilities can be very time-consuming and the effects
of facility location decisions are long-lasting. In addition, facility location decisions cannot be re-
vised frequently, therefore, two-stage stochastic programming is more suitable for network design
problem. Conversely, production including regular and overtime production plans can be revised
on the weekly or monthly basis depending on the firm’s policy and hence multi-stage stochastic
programming is more suitable for lot-sizing and scheduling problems.

Scenario based stochastic programming is a powerful modeling approach if an accurate prob-
ability distribution of the random variable is known. However, data source may not be sufficient
to generate distributions due to incompleteness or unavailability of data. On the other hand, even
there is sufficient data, a representative approximation may require a large number of scenarios
which increases computational complexity significantly. Conversely, if the scenario sample size is
restricted due to computational limitations, the possible outcome of future stages under which deci-
sions are determined and evaluated is limited. In addition, scenario based stochastic programming
focuses on the average performance of the system while there are situations where the decision
maker concerns more about the worst case result. Bertsimas et al. (2018) proposed a robust opti-
mization approach based on polyhedral uncertainty sets. The advantage of their approach is that
the counterpart of a linear programming problem remains a linear programming problem. Litera-
ture on robust optimization for lot-sizing and scheduling problems with applications of sawmill and
refrigerator production system can be found in (Varas et al., 2014; Rahmani et al., 2013; Kanyalkar
and Adil, 2010). The major contribution of our third paper is that I apply a hybrid approach for
lot-sizing and scheduling problems. Two types of uncertainties were studied in the paper: demand
and overtime processing cost. I assumed that there was enough historical data for overtime pro-
cessing cost and hence stochastic programming was adopted to handle overtime processing cost
uncertainty. However, estimation of the distribution for future demand may not possible due to
market complexity and as a result, robust optimization was adopted to deal with demand un-
certainty. Similar approach has been studied in other applications such as supply chain network
design and power system markets (Keyvanshokooh et al., 2016; Fanzeres et al., 2015). The major
connection between the second and third paper is that I employ different approaches based on the
modeling assumption. If there is sufficient historical data and computation power, then scenario
based stochastic programming should be used. Reversely, if there is limited amount of data and
decision maker concerns more about the worst-case performance, then robust optimization should
be used.

Social, environmental and economic concerns spur an interest to develop sufficient and robust
supply chain networks. Kumar et al. (2004) applied fuzzy programming approach for solving ven-
dor selection problem. Three objectives include minimizing net cost, net rejections and net late
deliveries. Pishvaee and Torabi (2010) studied a closed-loop supply chain problem using fuzzy
programming. Minimizing overall costs and total delivery tardiness were considered in the model.
Since most supply chain problems may have multiple objectives, various aggregation functions have
been studied for fuzzy programming such as weighted additive and min-max approaches (Amid
et al., 2011, 2009). To address the sub-optimality problem from separated design in forward and
backorder networks, a multi-objective closed-loop supply chain problem is studied in my fourth
paper. The goal is to minimize overall system cost while maximizing the utilization of environ-
mental friendly materials. In terms of methodology, I adopted fuzzy programming since supply
chain network design is a long term planning problem and hence most parameters can be uncer-
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tain. Scenario based stochastic programming requires accurate joint distribution of all uncertain
parameters which are often impossible to obtain. In addition, closed-loop supply chain problems
with large scenario sample size is usually prohibitive due to computational limitations. According
to Bertsimas et al. (2018), only the coefficients on the left are affected by uncertainties. If both
left-hand and right-hand sides are affected, simultaneously, then auxiliary variables are required
which increase the complexity of problems. The fuzzy programming approach is more suitable for
closed-loop supply chain problems since the complexity of this approach is independent of number
of uncertain parameters. Another connection between the third and fourth papers that differs from
previous papers is that robust optimization and fuzzy programming approaches capture the deci-
sion maker’s attitude towards risk. A large budget in the robust optimization provides conservative
solution and the probability of constraint violation is low. In the fuzzy programming approach, α
indicates the degree of feasibility. Lower α value leads to better objective value at the expense of
lower degree of feasibility. Obviously, the robust optimization and fuzzy programming approaches
take solution feasibility into consideration while scenario based stochastic programming approach
does not.

1.3 Dissertation structure

The remainder of the dissertation is organized as follows. The first paper on relay network
design for daily routes is presented in chapter 2 and has been published in the International Jour-
nal of Production Research. In chapter 3, I present a multi-stage stochastic programming model
for lot-sizing and scheduling problems and this paper has been published in the Computers and
Industrial Engineering. In chapter 4, I propose a hybrid stochastic and robust optimization ap-
proach for lot-sizing and scheduling problems. This paper is currently under second round revision
in the European Journal of Operational Research. In chapter 5, I present a multi-objective fuzzy
programming approach for closed-loop supply chain problems which has been submitted to the
Computers and Industrial Engineering. Finally, chapter 6 includes conclusions, limitations, and
future works for this dissertation.
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CHAPTER 2. HUB RELAY NETWORK DESIGN FOR DAILY DRIVER
ROUTES

Hub-based relay networks for long haul trucking offer an opportunity to improve the work-life
balance of drivers while simultaneously supporting faster delivery through near-continuous flow of
containers from source to destination. In this paper, we develop a model for deciding hub location
and sizing along with the routing of loads. Costs of hub construction and operation, transportation
and penalties for multi-day driver trips are included. Both deterministic and two-stage stochastic
programming models have been formulated in this paper. The goal is to determine the optimal
hub and route decisions so that overall cost is minimized. A case study on the highway network
for the Western United States demonstrates the computational tractability of the approach along
with the importance of considering demand uncertainty.

2.1 Introduction

Long haul trucking is a major component of the U.S. logistics system. The Bureau of Labor
Statistics reported that there were approximately 1.8M long haul truckers in the U.S. in 2014. The
U.S. Department of Transportation data indicate that over 60% of total freight weight and volume
are shipped by truck, accounting for over $12B annually. These truck shipments account for over
40% of the ton-miles of shipped freight. The majority of these shipments exceed 250 miles and
one tenth are for shipments in excess of 2,000 miles. Given the extent of this activity, system
efficiency and sustainability are of critical importance. Efficiency refers to system costs and service
(delivery lead time and reliability). Sustainability refers to both operational and environmental
sustainability.

Truck shipments are typically classified as full truckload trucking (TL) or less than truckload
trucking (LTL). While trucks can often carry 20,000 lbs or more of cargo, generally loads in excess
of 10,000 lbs are considered TL. Large suppliers may make direct Point-to-Point (PtP) shipments to
major customers when demand volume and desired delivery frequency warrant direct TL shipments.
However, in many instances smaller loads are consolidated into full TL loads at local hubs to
facilitate cost efficiency. Shipments are rarely symmetric and TL research has focused on how
to minimize the unloaded (deadhead) movement of empty trucks returning to their home base or
next pick up location. Even though long PtP routes require multiple days per trip, to reduce
deadheading routes are often created with multiple legs causing drivers to be away from home for
extended periods. This method has substantial benefits for companies and customers in terms of
cost, but it is unsustainable both mentally and physically for truck drivers. Long driving distance
increases driver turnover rate. Mele (1989) observed that turnover ranges from 85% to 110% per
year in the TL industry. That problem persists today creating a shortage of long haul truck drivers.
By contrast, the turnover rate for local drivers with daily tours is significantly lower. Safety is also
an issue as drivers who are assigned away from home for a long time incur diet and sleep problems
that can increase the accident rate. In addition, the deadhead issue impacts costs. Meller et al.
(2012) reported that trucks are completely empty 25% of total time and utilization is only 57% for
the other 75% of loaded time.
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The Federal Motor Carrier Safety Administration maintains Hours of Service Regulations for
truck drivers. Included are an 11-Hour Driving limit and a 14-Hour consecutive duty limit following
10 consecutive hours off duty. Thus, by regulation, a lone driver transporting a load can be actively
advancing that load at most 50% of the time. This creates the possibility for designing a logistics
system that is more amenable to driver work-life balance, safety and delivery speed. This forms the
motivation for this research. Our objective is to develop models to create a hub relay network either
for a single large carrier, a consortium of carriers or as a third party enterprise. The models are
intended to determine the capacity and location of relay hubs along a highway network to facilitate
primarily, if not solely, single day driver tours. We assume a finite set of feasible hub locations and
sizes are available. A set of daily flows of freight loads between sources and destinations is assumed
to be known either as deterministic parameters or with a distribution. Costs considered include
the period depreciation and operating cost of a hub by size and location, loaded and deadheading
travel costs per mile for each highway link and a penalty cost per mile or time for overnight trips.
Accompanying the hub location decision is the route to be taken for each load.

The major contributions can be summarized as follows:

• We develop a novel volume and link-length capacitated, hub design model as a mixed-integer
linear program. Deadhead cost and extra travel time are measured;

• A time-dependent penalty cost is included in the objective function for multi-day tours. A
higher penalty cost rate parameter results in larger fixed cost for facility construction and
drivers return home more frequently. A lower penalty cost rate leads to longer round trips
but fewer hubs are required;

• We extend the deterministic model to a two-stage stochastic programming model by consid-
ering uncertainty in demand. Robustness of, and bottlenecks in, the stochastic system are
examined;

• Various preprocessing cuts and two sets of feasibility cuts are developed to enhance compu-
tational performance;

The reminder of the paper is organized as follows: section 2.2 reviews the relevant literature on
hub networks applicable to trucking. Deterministic and stochastic demand models are formulated
in section 2.3. Computational results and sensitivity analyses are provided in section 2.4 followed
by Conclusions in section 2.5.

2.2 Literature review

Hub and spoke networks have been used in the airline industry for forty years (Phillips, 1987).
However, in the airline industry, the goal is to consolidate passengers and take advantage of the
multiple aircraft sizes, which differs from that for the hub network considered for trucking. Focusing
on LTL, Braklow et al. (1992) described freight transportation practices and the use of hubs for
consolidation. While opportunities for load consolidation and cross-docking exist and would be
supported by the proposed hub network, our primary motivation is to support one-day tours for
drivers and continuous movement of loads. The concept of using such a hub network for trucking is
not new. Taylor et al. (1999) considered the problem from three different viewpoints: i) customer; ii)
company; and iii) driver. From a customer's perspective, good dispatching means merchandise can
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be delivered on time without damage. From a company's perspective, a good dispatching scenario
means high equipment utilization and good delivery performance. From a driver's perspective,
a good hub dispatching scenario can be well represented by the total mileage per day, which is
directly proportional to pay.

A hub network is consistent with the concept of the Physical Internet (PI), an initiative to
rethink logistics making use of standardized shipping containers and coordinated, cooperative ship-
ment (Montreuil et al., 2013). Meller et al. (2012) compared the conventional dispatching model
with a PI hub model. Under conventional dispatching, a single driver picks up loads at source
point and delivers them to the destination. For PI dispatching, drivers pick up freight originating
in their domicile zone, drop off loads at zone boundary or hubs and pick up incoming loads for
delivery within their own zone. Several advantages of this new model would include: (i) drivers
could still use conventional dispatching methods to maintain many of the efficiencies inherent to
the conventional dispatching system, (ii) drivers could always travel only in their own domiciles, so
that they can go back home more frequently, (iii) drivers are more familiar with driving conditions
and routes, and (iv) stress and fatigue are reduced potentially resulting in fewer accidents. How-
ever, Taylor et al. (2001) mentioned that for loads with short haul lengths the performance of PI
could become poor. Finally, while not directly part of this paper, we note that a hub relay network
could assist with recent innovations in city logistics. Proper placement of hubs and scheduling of
load handoffs could facilitate inner city deliveries at off-peak hours thereby reducing congestion
and improving environmental sustainability.

Most of the prior hub design literature has focused on problems with a limited number of links
per trip and limited outgoing/incoming links from sources/destinations. MacKinnon and Barber
(1972) introduced a network problem of designing transportation system including of truck lines.
Qiu and Sharkey (2013) considered a dynamic single facility location problem of building a sea
base, the goal was to minimize total transportation cost as well as to provide necessary supplies to
military locations. O’Kelly (1986) modeled the cases where all flows must go through a single hub
or at most two. The two hub problem implies at most one interhub link per source to destination
route. Unlike these facility location problems, several new facilities must be located with respect to
existing hubs in the PI network design problem. Campbell (1996) modeled the problem as a p-hub
Median problem assuming at most two hubs would be used between any source-destination pair
and developed heuristics for the single allocation per source/destination case. Motivated by postal
delivery, Ebery et al. (2000) examined several formulations for the problem with at most two hubs
per trip and proposed an heuristic. Hub capacities were considered. Üster and Agrahari (2011)
also modeled the problem with at most two intermediate stops, essentially a consolidation and
deconsoidation point. Campbell and O’Kelly (2012) provided a more recent survey of this research
area. In our problem, however, each source and destination can interact with multiple hubs and
the number of links on a path is unlimited (except cycles are not allowed) to allow for shorter
driver routes. Üster and Maheshwari (2007) considered a strategic network design for multi-zone
truckload shipments. They formulated a model in order to choose the location of each Relay Node
(RPs are equivalent to our hubs), service area of each RP and assignment of non-RP nodes to
RPs. Üster and Kewcharoenwong (2011) modified the model and developed a relay network for
truckload transportation. The relay network problem addressed in those papers is very similar to
the problem addressed in this paper. Efroymson and Ray (1966) proposed a discrete plant location
problem and the purpose was to determine quantity, location, and size of plants. The differences
are: (i) We do not restrict paths to be unique thus allowing continuous flow variables; (ii) We
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impose capacity limits on hubs based on fixed costs with discrete capacity choices; (iii) We do
not restrict the number of links on a path as in Uster and Agrahari; (iv) We directly model the
costs of deadheading and extended tours instead of utilizing hard constraints; and (v) we focus
on the interhub traffic, assuming all regional transit is handled separately and therefore effectively
originates or terminates at a major hub location. In practice this would mean a major port or
urban area.

There are also papers focusing on developing heuristics to solve network design problems.
Cooper (1964) developed an heuristic and pointed out that a random destination algorithm pro-
vided the closest optimal result for the allocation problem in a reasonable amount of computation
time. Kuehn and Hamburger (1963) developed a greedy algorithm by adding one warehouse a time
until no additional warehouse can be built without increasing total cost. Feldman et al. (1966) in-
troduced an opposite heuristic algorithm by removing one existing warehouse a time. They claimed
that no solutions generated were higher in cost than the Kuehn and Hamburger’s results, but no
big improvements were observed either. Love (1974) constructed a multi-facilities location problem
using dual program as it solved location problems much more efficient in the special cases where
linear constraints are presented. Our models are shown to be computationally feasible for mid-sized
problems, so we decide to reserve the development of new algorithm for our future works.

2.3 Problem definition and formulation

The operational characteristic of a PI-inspired hub network is shown in Figure 2.1. The suppliers
and customers are represented by circles and the hubs are represented by squares. The maximum
allowable travel time forces drivers to drop off freight at a site where a hub is built. Route efficiency,
capacity and fixed cost are critical factors that make one hub location more preferable than others.
In Figure 2.1, one feasible route to ship products from supplier i to customer l is to stop at four
different hubs before reaching the destination. The dashed horizontal line between nodes i and l
is the conventional delivery route. The motivations to design a PI network instead of delivering
products from point to point can be summarized as follows:

• By assigning drivers to particular work areas, they will be more familiar with the routes and
this will reduce the chance of an accident;

• Asymmetric flow volumes result in point to point delivery usually incurring huge deadhead
cost. This issue can be addressed in the hub network system by allowing drivers to have
flexible routing options;

• Drivers can return home nightly or at least much more often in the hub network system than
in the conventional network system thus increasing driver satisfaction and reducing turnover
and travel cost;

• The potential exists to exchange loads for a more continuous flow without necessarily incurring
the idle time due to driver rest periods.

In modeling the hub network, we make several assumptions as follows:

• The set of shipments (source-sink pairs and load volume per time) is known either determin-
istically or through a probability distribution;
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i l

i Supplier l Customer hub

Figure 2.1: A simplified example of PI-inspired network

• As the intent is to facilitate single day tours of no more than 10 hours, an hourly over-
time penalty is charged for trips that do not permit the driver to return to their domicile
or home base in a day. Corresponding policy on Hours-of-Service limits can be found on
(https://www.foleyservices.com/news/hours-of-service-the-100150-air-mile-exemptions/comment-
page-8/);

• To minimize long hauls, an upper limit is set on the length of an outbound and return tour
for a driver. Longer segments and tours are forbidden;

• A hub with sufficient capacity is needed if one wants to send out flow from a source node or
receive flow at a sink node. This assumption can be found in the most production problems
in which warehouses are used for storage;

• Hub capacity is measured by the maximum of the incoming or outgoing loads per period;

• A potential hub location (typically a city) can have multiple distribution centers as dictated
by capacity requirements. For example, there are multiple FedEX warehouses in Phoenix,
AZ;

• Travel time can be asymmetric, that is, the travel time from point A to point B may be
different from the travel time from B to A;

• The model implicitly assumes an operational ability to manage flows along arcs such that
deadheading will occur in at most one direction on each arc. This is the intention of the
drop-off and pickup nature of the PI-inspired hub network.

https://www.foleyservices.com/news/hours-of-service-the-100150-air-mile-exemptions/comment-page-8/
https://www.foleyservices.com/news/hours-of-service-the-100150-air-mile-exemptions/comment-page-8/
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2.3.1 Parameters and decision variables

The mathematical notation is described in Table 2.1. Let N = {1, · · · , n} represent the set of po-
tential hub locations. I = {1, · · · , i} denotes the set of suppliers (shipment sources), L = {1, · · · , l}
indicates the customers, and Z = {1, · · · , z} indexes the discrete choices of hub size. Note that I
and L are subsets of N since N includes all source and sink nodes. Parameter wil is the demand
from site i to site l and tjk denotes the travel time between adjacent site locations j and k. In
addition, pjk is the penalized travel time if we directly go from j to k. For example, if the allowable
daily tour is 10 hours and tjk = 8 then pjk = 8 − 5 = 3 since there is no penalty for the first 5
hours of outbound travel time but longer segments imply a tour exceeding one day. The regular
transportation cost per unit travel time is α and β is the penalty cost for working overtime. Let
Ujz and cjz indicate the capacity in loads per period and the fixed depreciation and operational
cost of hub of type z at location j, respectively. Deadhead cost per unit of travel time is measured
by the parameter δ and presumably δ ≤ α. Decision variable Xijkl represents the proportional
demand flow from i to l using j and k as adjacent stops. There is no limit on the number of
hubs visited for any flow. Xiikl denotes the first segment of shipment going from supplier i to
hub k. Xijll denotes the last segment of shipment going from hub j to customer l. As shown
in Figure 2.1, the feasible route has two more hubs to visit. Note that Xijkl represents the flow
from supplier i to customer l using adjacent stops j and k. Unlike the p-hub problem with fixed
p value, our problem allows drivers to visit any number of hubs in the optimal solution. Yjz is
a binary variable which takes value one if a hub of type z is built at site j and zero otherwise.
Finally, Hjk measures the flow imbalance on the arc {j, k}, i.e. deadheading. From a mathematical

perspective, Hjk =

∣∣∣∣∑I
i=1

∑L
l=1wil · (Xijkl − Xikjl)

∣∣∣∣∀{j, k} ∈ N . This nonlinear function can be

linearized by adding two extra constraints in the model :
∑I

i=1

∑L
l=1wil · (Xijkl−Xikjl) ≤ Hjk and∑I

i=1

∑L
l=1wil · (Xikjl −Xijkl) ≤ Hjk

2.3.2 Capacitated, deterministic hub design model

In the deterministic model, volume of demand is fixed and known. We aggregate daily demand
and analyze the system based on the annual demand. Later in the stochastic programming model,
we use daily demand to allow each supplier-customer pair to have different demand on a daily basis.
Let F be the set of source-destination pairs for which wil > 0. The CApacitated, Deterministic
HUb network design model (CADHUB) can be shown as follows:

min

I∑
i=1 i 6=l

L∑
l=1

N∑
j=1

N∑
k=1

wil ·Xijkl · (tjk · α+ pjk · β)

+
N∑
j=1

N∑
k>j

δ ·Hjk · tjk +
N∑
j=1

Z∑
z=1

Cjz · Yjz

(2.1)

subject to:

N∑
k=1

Xiikl −
N∑
k=1

Xikil = 1 ∀{i, l} ∈ F (2.2)
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Table 2.1: Notation for the mathematical model

Indices

i 1, 2 · · · I Suppliers

l 1, 2 · · ·L Customers

j, k 1, 2 · · ·N Potential hub locations

z 1, 2 · · ·Z Capacity levels

Parameters

wil Demand from i to l

tjk Travel time from j to k

pjk Overtime from j to k

Ujz Capacity level z

Cjz Fixed cost of a hub at capacity level z

α Transportation cost per hour

β Penalty cost for overtime per hour

δ deadhead cost per hour

Decision Variables

Xijkl Proportional demand from i to l using hubs j and k as ad-

jacent stops

Yjz Binary variable takes 1 if a hub at capacity level z is built

at site j and 0 otherwise

Hjk Total amount of deadhead from j to k

N∑
j=1

Xijll −
N∑
j=1

Xiljl = 1 ∀{i, l} ∈ F (2.3)

N∑
j=1

Xijkl −
N∑
j=1

Xikjl = 0 ∀{i, l} ∈ F, k 6= i, k 6= l (2.4)

I∑
i=1 i 6=l

L∑
l=1

N∑
k=1

wil ·Xijkl ≤
Z∑
z=1

Ujz · Yjz ∀j (2.5)

I∑
i=1 i 6=l

L∑
l=1

N∑
j=1

wil ·Xijkl ≤
Z∑
z=1

Ukz · Ykz ∀k (2.6)

I∑
i=1 i 6=l

L∑
l=1

wil · (Xijkl −Xikjl)−Hjk ≤ 0 ∀{j, k} (2.7)

I∑
i=1 i 6=l

L∑
l=1

wil · (Xikjl −Xijkl)−Hjk ≤ 0 ∀{j, k} (2.8)
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0 ≤ Xijkl ≤ 1 ∀{i, j, k, l} Hjk ≥ 0 ∀{j, k} (2.9)

Yjz ∈ {0, 1} ∀{j, z} (2.10)

The first term in the objective function is the overall transportation costs between all of the
source and sink nodes. This term accumulates both the regular time and any additional time-based
penalty cost. The second term represents the total deadhead cost in the system. The cost is a
lower bound based on the minimum imbalance in loaded and unloaded flows along each arc. The
third term is the total fixed depreciation and capacity-based operational cost for building hubs.
Maximum allowable trip travel time θ is implicitly restricted by setting travel time to a relatively
large constant if its real travel time is greater than θ. Alternatively assign a relatively large penalty
cost or zero flow for those travel times larger than θ. Equation 2.2 restricts that flow will never come
back to the source after being sent out. Equation 2.3 ensures that flows terminate at the intended
destination. Equation 2.4 is a flow conservation constraint. It ensures that flow coming out from
a site equals to flow going into that site except the source node and sink node. Equation 2.5 and
Equation 2.6 restrict flow into and out of a location to be no more than the capacity of the hub
constructed at that site including the source node and sink node. Equation 2.7 and 2.8 evaluate
the deadhead cost on arc {j, k}. Hjk is set to the maximum of the total weighted loaded flow
differential in either direction between j and k. Equation 2.9 includes the non-negativity and the
upper bound on X and H variables. Equation 2.10 restricts Y variables to be binary. In reality, it
is possible to have multiple distribution centers or storages at one site and this is considered in our
model as well. The fixed cost of building a hub is typically a concave function indicating the hub
with larger capacity should have lower unit cost. In addition, four different types of preprocessing
constraints are implemented: (i) No flow on an arc if its travel time is longer than the maximum
travel time θ; (ii) No flow reentering its source, which can be expressed as Xijil = 0; (iii) No flow
leaving its sink, which can be expressed as Xilkl = 0; (iv) Flow directly from sink to source is not
allowed, which can be expressed as Xilil = 0.

An advantage of the model is the use of continuous variables to represent flows. Only hub
location and sizing decisions require binary variables. This formulation has O(MN2) continuous
variables and O(NZ) binary variables.

The model is also flexible and can be extended to consider other factors. For example, some
states allow double or triple loads. This can affect both transportation cost and deadhead cost. The
hub model could account for such scenarios if they were predetermined along specific legs of source-
destination pairs by defining parameters αijkl and δjk appropriately. Likewise, the number of paths
to be considered for each source-destination pair could be restricted to likely, pre-identified best
choices. This would reduce the number of variables and strengthen the feasibility cuts generated
based on hub capacity. Note that we have chosen to model costs in terms of trip time but the
objective may be easily modified to reflect costs as a function of mileage or a combination of time
and distance.

2.3.2.1 Two-stage stochastic programming model

The CADHUB model assumes flows are known. In practice, only forecasts are available and
decisions are often made under uncertainty. In this section, demand wil is considered as a random
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variable whose realization is known only after the hub locations and sizes are specified. Daily
demands vary according to a probability distribution. A two-stage stochastic programming model
is proposed to assist the decision making under uncertainty. Decision variables can be classified
chronologically into two categories: first-stage decisions and second-stage decisions. The first-stage
decisions have to be determined in the presence of uncertainty while the second-stage decisions
can be made after realization of shipment demand. In the strategic network design problem,
the first-stage decisions include determination of hub locations and capacities. The second-stage
decisions determine the route based on the existing hub locations, hub capacity, and the realization
of uncertain demand. In the case of period to period variability, we assume the system essentially
clears itself each period and ignore potential inventory accumulations between periods. Thus, hub
location Yjz is first determined in the presence of uncertain demand. Then, routing decision Xijkl

is made for the realized shipments given those hub locations and capacities.
Let the flow volume demand be represented by the n(n − 1) component random vector ξ =

{w1,2, ..., wl,l−1} where wij is the number of truck loads to be transported in the period from i to
j. Note that flows may be in either direction. The objective is to minimize the hub configuration
and expected transport cost subject to Equation 2.10:

min

N∑
j=1

Z∑
z=1

Cjz · Yjz + E[O(X,H, ξ)] (2.11)

E[O(X,H, ξ] is the expected value of the routing problem for a given hub network Yjz and flow
volume scenario ξs defined by:

min
I∑

i=1 i 6=l

L∑
l=1

N∑
j=1

N∑
k=1

wil(ξs) ·Xijkl · (tjk · α+ pjk · β) +
N∑
j=1

N∑
k>j

δ ·Hjk · tjk (2.12)

s.t.

I∑
i=1 i 6=l

L∑
l=1

N∑
k=1

wil(ξs) ·Xijkl ≤
Z∑
z=1

Ujz · Yjz ∀{j} (2.13)

I∑
i=1 i 6=l

L∑
l=1

N∑
j=1

wil(ξs) ·Xijkl ≤
Z∑
z=1

Ukz · Ykz ∀{k} (2.14)

I∑
i=1 i 6=l

L∑
l=1

wil(ξs) · (Xijkl −Xikjl)−Hjk ≤ 0 ∀{j, k} (2.15)

I∑
i=1 i 6=l

L∑
l=1

wil(ξs) · (Xikjl −Xijkl)−Hjk ≤ 0 ∀{j, k} (2.16)

In addition, Equation 2.2, 2.3, 2.4, 2.9 are also required to minimize Equation 2.12.
The demand is assumed to be normally distributed that can be approximated by a set of possible

scenarios where subscript s is used to denote a scenario with probability Ps. Each wils represents
a possible realization of uncertain daily demand and there are 10 different patterns (Hu and Hu,
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2016). Letting the set of scenarios approximate the volume of demand, we obtain the deterministic
equivalent CAPHUB model

min

S∑
s=1

Ps(

I∑
i=1 i 6=l

L∑
l=1

N∑
j=1

N∑
k=1

wils ·Xijkls · (tjk · α+ pjk · β)

+
N∑
j=1

N∑
k>j

δ ·Hjks · tjk) +
N∑
j=1

Z∑
z=1

Cjz · Yjz

(2.17)

Subject to:

N∑
k=1

Xiikls −
N∑
k=1

Xikils = 1 ∀{i, l, s} (2.18)

N∑
j=1

Xijlls −
N∑
j=1

Xiljls = 1 ∀{i, l, s} (2.19)

N∑
j=1

Xijkls −
N∑
j=1

Xikjls = 0 ∀{i, l, k, s} (2.20)

I∑
i=1 i 6=l

L∑
l=1

N∑
k=1

wils ·Xijkls ≤
Z∑
z=1

Ujz · Yjz ∀{j, s} (2.21)

I∑
i=1 i 6=l

L∑
l=1

N∑
j=1

wils ·Xijkls ≤
Z∑
z=1

Ukz · Ykz ∀{k, s} (2.22)

I∑
i=1 i 6=l

L∑
l=1

wils · (Xijkls −Xikjls)−Hjks ≤ 0 ∀{j, k, s} (2.23)

I∑
i=1 i 6=l

L∑
l=1

wils · (Xikjls −Xijkls)−Hjks ≤ 0 ∀{j, k, s} (2.24)

0 ≤ Xijkls ≤ 1 ∀{i, j, k, l, s} Hjks ≥ 0 ∀{j, k, s} Yjz ∈ {0, 1} (2.25)

2.4 Case study

We apply the PI-inspired hub network design framework for a case study in the western United
States to illustrate and validate the optimization model. Many of the busiest U.S. ports are mainly
located along the west coast with Los Angeles and Long Beach being the busiest two. Together
they move on the order of 14,000,000 TEUs (twenty-foot equivalent units, a standard intermodal
shipping container) annually. Seattle and Oakland are also in the top 10 busiest ports which move
4,000,000 TEUs combined. Thirty-seven potential hub locations in the West Coast highway net-
work are selected including those four ports. Transportation cost is $ 22 per hour since it is average
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hourly pay for truckers. Penalty for driving overtime and deadhead cost are set proportional to the
regular transportation cost. Demand is obtained from Freight Analysis Framework Data Tabula-
tion (http://faf.ornl.gov/faf4/Extraction2.aspx), and three different sizes of hubs are considered at
potential locations. The capacities of hubs are proportional to the overall demand and larger hub
has smaller unit cost. The GAMS (General Algebraic Modeling System) is utilized to solve both
deterministic and two-stage stochastic programming models. It is a high-level modeling system
for the optimization industry which connects to several third party solvers such as CPLEX and
Gurobi.

2.4.1 Results of deterministic model

We assume that the trucks used in the system are semi-trailer trucks and the average load per
trip is 10 tons. θ is set to 10 hours so each driver will go back home in at most two days. Travel
times are taken from (http://www.driving-distances.com/) and flow volumes from the U.S. DOT
Bureau of Transportation Statistics.

In this deterministic model, we selected ten cities as our suppliers/customers. Each selected
location will send flow to all other selected locations resulting in total 90 flows. Deadhead cost is
$ 2.04 × 108, transportation cost is $ 1.17 × 109, and hub building cost is $ 1.42 ×109. Note that
these costs are the annual costs since the demand in the deterministic model is fixed, therefore, we
aggregate daily demand. Eight small hubs, two medium hubs, and two large hubs are built, respec-
tively. The potential hub locations can be found in Figure 2.2. Comparing to direct shipments, the
overall extra travel time is measured by:

I∑
i=1

L∑
l=1

{wil · (
N∑
j=1

N∑
k=1

Xijkl · tjk − til)}

for any positive demand flow wil. In this expression
∑N

j=1 .
∑N

k=1Xijkl · tjk measures the overall
transportation travel time in the PI network and til measures the travel time of conventional
point to point shipment. The extra travel time is 4.93×107 hours. The partial results of flows
are shown in Table 2.2. We picked three different flow results: (i) flow uses multiple routes and
hub stops (Seattle-San Francisco flows); (ii) flow uses single route but multiple different hub stops
(Sacramento-Phoenix flows); (iii) flow directly from source to sink (Phoenix-Las Vegas flows). For
example, flows from San Francisco (22) to Seattle (1) are represented by 22→ 1. First, all products
will be transported from 22 to 25. Then 11.9% of products will be directly delivered to destination
Seattle while 88.1% of products will be delivered to 27 followed by destination. Note that bi-
directional route decisions can differ between location pairs due to demand imbalance and hub
capacities. The travel time between Seattle and San Francisco is around 12.5 hours and the travel
time between Sacramento and Phoenix is around 11 hours. The travel times between those cities
exceeds the maximum allowable travel time meaning we need at least one stop (drop-off) before
arriving at the destinations. The travel time between Phoenix and Las Vegas is less than 5 hours
indicating this is a PtP conventional shipment. Since the maximum allowable travel time θ, fixed
cost, and penalty cost for overtime can have a significant impact on the objective value, we conduct
sensitivity analyses of these parameters in the next section.

http://faf.ornl.gov/faf4/Extraction2.aspx
http://www.driving-distances.com/
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Figure 2.2: Hub location and size decisions in the western interstate highway system

2.4.1.1 Sensitivity analysis of the deterministic model

In this section, sensitivity analysis is performed on the maximum allowable travel time θ, fixed
cost, and overtime penalty. Maximum allowable travel time θ can be 5, 7.5, or 10 hours. Under
the assumption that a truck driver works 10 hours a day, θ = 5 ensures the driver to come back
home within one day, θ = 7.5 restricts the driver to come back home within one and a half days,
and θ = 10 limits the driver to come back home within two days (one night on the road). Penalty
cost for overtime is set to 50% or 100% of the regular time transportation cost. For example, if
the additional penalty is 100% of the regular time transportation cost, then a trucker’s salary are
doubled during overtime. Fixed cost is another factor that will impact the result. In the case of high
penalty cost and fairly low fixed cost, truck drivers will drop off the products after 5 hours travel
time since building a hub is not as expensive as working overtime. On the other hand, if penalty
cost is low compared to fixed cost, then truck drivers will drive up to θ hours before stopping.
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Table 2.2: Selected routing decisions

Flows between Seattle (1) and San Francisco (22)

1→ 22 Proportion 22 → 1 Proportion

1→ 25 1 22 → 25 1

25→ 22 0.844 25 → 1 0.119

25→ 23 0.156 25 → 27 0.881

23→ 22 0.156 27 → 1 0.881

Flows between Sacramento (23) and Phoenix (15)

23 → 15 Proportion 15 → 23 Proportion

23 → 21 1 15 → 19 1

21 → 19 1 19 → 23 1

19 → 15 1

Flows between Phoenix (15) and Las Vegas (10)

15 → 10 Proportion 10 → 15 Proportion

15 → 10 1 10 → 15 1

Three different hub unit costs are analyzed. In order to test the hub building cost, we introduce
another variable φ, which measures the ratio of the sum of transportation cost and deadhead cost
to the fixed cost. The goal is to find a reasonable hub unit cost so that the overall ratio φ can
be somewhere between 0.5 to 2. In reality, different companies have different expense structure.
A typical pharmaceutical company has φ around 5 while retail has φ around 0.6. A Chemical
company usually has φ around 1.5 while high-technology company has φ around 2.4 (Alicke and
Lösch, 2010). Correlations between θ and penalty cost β, θ and ratio φ are shown in Table 2.3 and
in Table 2.4, respectively. The second column reports the number of hubs with 10/3/3 indicating
that ten small hubs, three medium hubs, and three large hubs are built.

Table 2.3: Correlations between θ and β

# of hubs deadhead($) transportation($) fixed($) extra time(hrs)

θ = 5, β = 11 10/3/3 2.01×108 1.12×109 1.96×109 5.11×107

θ = 5, β = 22 10/3/3 2.01×108 1.12×109 1.96×109 5.11×107

θ = 7.5, β = 11 9/2/2 2.04×108 1.11×109 1.51×109 4.91×107

θ = 7.5, β = 22 9/2/2 2.04×108 1.15×109 1.51×109 4.92×107

θ = 10, β = 11 8/2/2 2.03×108 1.13×109 1.42×109 4.9×107

θ = 10, β = 22 8/2/2 2.04×108 1.17×109 1.42×109 4.93×107

In Table 2.3, hub unit cost is set to $ (90,80,70) per unit of product for small, medium, and
large hub, respectively to incorporate economies of scale. Concretely, the fixed cost for building
and operating a small hub equals to the capacity of that hub times 90. Only θ and β can vary in
Table 2.3. When θ = 5, overtime is actually not allowed since no penalty in the first 5 hours and
the maximum allowable travel time is also 5. That is, penalty cost does not affect the decisions
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Table 2.4: Correlations between θ and ratio φ

# of hubs deadhead($) transportation($) fixed($) extra time(hrs) φ ≈
θ = 5, U1 9/2/4 2.19×108 1.18×109 3.84×109 5.38×107 0.37

θ = 5, U2 10/3/3 2.01×108 1.12×109 1.96×109 5.11×107 0.67

θ = 5, U3 10/3/3 2.01×108 1.12×109 9.79×108 5.11×107 1.35

θ = 7.5, U1 7/3/2 1.99×108 1.19×109 2.98×109 5.04×107 0.47

θ = 7.5, U2 9/2/2 2.04×108 1.15×109 1.51×109 4.92×107 0.9

θ = 7.5, U3 9/2/2 2.04×108 1.15×109 7.55×108 4.92×107 1.79

θ = 10, U1 8/2/2 2.04×108 1.17×109 2.84×109 4.93×107 0.48

θ = 10, U2 8/2/2 2.04×108 1.17×109 1.42×109 4.93×107 0.96

θ = 10, U3 8/2/2 2.04×108 1.17×109 7.11×108 4.93×107 1.93

when θ = 5 and this is the reason why all of the travel expenses are identical in the first two rows
in Table 2.3. As we increase θ to 7.5, the number of hubs decreases since truck drivers are allowed
to move in a larger route between returns to home base. Setting θ to 10 gives truck drivers even
more flexibility. If we compare the hub quantity in Table 2.3, it is obvious that θ = 5 requires
more hubs than θ = 7.5 and θ = 10. Although the penalty cost β does not affect hub decisions, the
routing decisions are actually different for different combinations of θ and β. Concretely, for the
same θ, larger β leads to more extra time since long tour without stops creates penalty cost and
short tour with stops creates extra travel time. In order to see the affect of fixed cost, we fixed the
transportation cost, penalty cost and deadhead cost parameters and only changed θ and hub unit
cost in Table 2.4. Three different combinations of hub unit costs are examined: U1: $ (180, 160,
140) , U2: $ (90, 80, 70) and U3: $ (45, 40, 35) per unit of product. The goal to conduct sensitive
analysis on the hub cost is to find a reasonable hub unit cost so that overall transportation cost and
fixed cost are in the similar order of magnitude. As hub unit costs decrease (from U1 → U3), the
system tends to add more hubs and long haul are avoided. Note that when θ = 10, hub and route
decisions are unchanged across the different hub unit cost levels. This indicates that the system
is really robust for reasonable hub unit cost. However, hub and route decisions are still sensitive
when the hub unit costs are extremely small. By changing parameters θ and hub unit cost, we
obtain φ ranging from 0.37 to 1.93 meaning transportation cost and fixed cost are comparable in
terms of magnitude. One significant improvement in Table 2.3 and Table 2.4 is the deadhead cost.
The traditional PtP transportation system ends up with deadhead cost equal to $ 4.4×108, which
is twice as much as the deadhead cost in our model due to the fact that truck drivers are much
more flexible in the PI-inspired hub network.

To test the computational viability of the model, the full 37 node network was solved for a variety
of flow levels. All computations were performed on Intel(R) Core(TM)2 Quad CPU and results
are shown in Table 2.5. The number of binary variables remains unchanged since the quantity of
flows does not affect the hub location and size options. The number of flows and complexity of the
problem increase as we add shipment sources (suppliers) and destinations (customers). Initially
selecting 10 origins and destinations produces 90 flows. The number of customers and suppliers then
increments by 2 in each row of Table 2.5. Note that the computation time increases exponentially
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from approximately 1 minute to 81 hours. But as this is a design problem, the model is still
tractable for a moderate network size.

Table 2.5: Computation times and model statistics for the deterministic model

# of flows # of binary # of continuous # of equations computation time

90 111 124,695 67,633 1 min 21 sec

132 111 182,189 97,911 18 mins 23 sec

182 111 250,639 133,961 22 mins 13 sec

240 111 330,041 175,779 1 hrs 05 mins

306 111 420,395 223,365 2 hrs 18 mins

380 111 521,701 276,719 15 hrs 14 mins

462 111 633,959 335,841 81 hrs 9 mins

2.4.2 Results of two-stage stochastic programming model

The uncertainty under consideration is daily demand between suppliers and customers. A two-
stage stochastic programming model is formulated to design the system under uncertainty. Hub
sizes and locations are first determined. The routing problem is then solved each period based on
the daily volumes. To test the model we generate a set of daily demand scenarios that represent
possible demand realizations. The mean of those scenarios is set equal to the daily demand in the
deterministic model. The standard deviation is set to 10% or 20% of mean demand in order to
gauge the reaction of the system. Demand is assumed to be normally distributed and 10 possible
realizations of demand are generated. The comparison of the deterministic model and stochastic
model is included in Table 2.6. The first row in Table 2.6 conveys the results from the deterministic
model. The rest of the results are from the stochastic programming model. As the standard
deviation increases, fixed cost and the objective value increase as the system tends to build hubs
with larger capacity. When the standard deviation increases to 10% and then 20% of the mean,
one small hub and then two small hubs are replaced by medium hubs, respectively. Intuitively,
larger hubs require more expenses but provide system with more flexibility against uncertainty.
The details of hub location decisions are included in Table 2.7. One of our modeling assumptions
is that each customer and supplier must have sufficient storage to receive and ship out products.
Since we only change the volume of demand while keeping locations of customers and suppliers
unchanged, our hub location decisions are not particularly sensitive to the uncertainty parameter.
Hub capacities are impacted however. Notice that a small hub is upgraded to a medium hub at
site 19 when the standard deviation of demand increases to 10% and another change is made at
site 15 when the standard deviation of demand increases to 20%.

In order to test whether the stochastic model provides better results than the deterministic
model, we conduct analyses from two different perspectives: (i) Identifying the bottleneck of the
deterministic model; (ii) Measuring the Expected Value of Perfect Information (EVPI) . We start
the analysis by testing the robustness of the hub decisions in the deterministic model. We fix the
hub decisions at the values obtained from the deterministic model and then solve the deterministic
model for each scenario. The details are shown in Table 2.8. The main motivation to test the
robustness of the hub decision is that in the stochastic programming model only the first stage
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Table 2.6: Comparison of the deterministic model and stochastic model

(expected) (expected)
# of hubs objective value($) trans’ cost($) fixed cost($) extra time(hrs)

std=0% 8/2/2 7,670,668 3,212,719 3,898,200 124,139

std=10% 7/3/2 7,879,616 3,231,276 4,085,100 124,702.4

std=20% 6/4/2 8,084,275 3,238,207 4,272,000 124,733.6

Table 2.7: Hub location decisions in the stochastic model

std=0% std=10% std=20%

Location Small Medium Large Small Medium Large Small Medium Large

1 1 1 1

7 1 1 1

10 1 1 1

15 1 1 1

18 1 1 1

19 1 1 1 1 1 1

21 1 1 1

22 1 1 1

23 1 1 1

25 1 1 1

27 1 1 1

decision is implementable since it is scenario independent. Anything beyond the root node is
scenario dependent. Intuitively, if all of the scenarios are feasible, the deterministic model is capable
of handling the uncertainty. Otherwise, the stochastic model overrides the potentially infeasible in
practice deterministic model solution. Using the hub decisions from the deterministic model, when
the standard deviation is 10%, we obtain only one infeasible scenario which is scenario 3. When
the standard deviation is 20%, this number increases to three which is a sign that the deterministic
model becomes more and more vulnerable as variation increases. Table 2.8 and 2.9 aim to provide
insights on the capacity expansion investment. For example, when the standard deviation is 10%
we obtain an optimal solution by upgrading a small hub at site 19 to a medium hub. On the other
hand, we can find feasible solutions for every scenario by expanding the capacity of small hubs or
large hubs by 64 units. The first type of investment is an optimal strategy in terms of the model’s
perspective but the second is cheaper in terms of fixed cost investment and indicates a potentially
more meaningful use of the model. In the third column of Table 2.8, we measure the slack capacity,
that is, how much additional capacity we need to invest in order to make the problem feasible.
Since we only change the volume of demand, and the locations of suppliers and customers stay
the same, we can ensure a feasible solution by increasing the capacity of hubs. Note that we have
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three options when it comes to capacity investment: small hub, medium hub, and large hub. In
Table 2.8, 64 / ∞ / 64 means if we only have a chance to increase the capacity of small hubs, then
we need 64 additional units of capacity in order to ensure a feasible solution. Likewise, if we only
have a chance to increase the capacity of large hubs, then we need 64 units as well. Note that the
slack of medium hub is ∞ due to the fact that medium hubs are not the bottleneck in scenario 3
and increasing the capacity of medium hubs is not going to achieve feasibility. Scenarios 7, 8, and
10 are infeasible when the standard deviation is 20%. Respectively, 319 and 266 units of capacity
are needed for small hubs if we want to obtain a feasible solution to scenario 7 and scenario 8.
For scenario 10, in order to maintain feasibility we can either increase the capacity of small hub or
the capacity of large hub by 354. Clearly, the deterministic hub decision becomes more and more
unreliable as we introduce more variations and it will be reflected in the results of EVPI.

Table 2.8: Robustness test of the hub decisions in the deterministic model

Standard deviation = 10%

Scenario# Objective value($) Feasibility Slack

1 7,689,447 X -

2 7,673,031 X -

3 - x 64 / ∞ / 64

4 7,670,460 X -

5 7,744,635 X -

6 7,700,213 X -

7 7,643,186 X -

8 7,742,715 X -

9 7,724,907 X -

10 7,674,543 X -

Standard deviation = 20%

Scenario# Objective value($) Feasibility Slack

1 7,698,681 X -

2 7,575,240 X -

3 7,395,544 X -

4 7,735,208 X -

5 7,682,301 X -

6 7,716,281 X -

7 - x 319 / ∞ / ∞
8 - x 266 / ∞ / ∞
9 7,766,382 X -

10 - x 354 / ∞ / 354

In addition, we investigate the bottleneck of this system, that is, which hubs should be consoli-
dated if we want a stronger and more robust network system. The bottleneck of the system can be
tested by recording the volume of flow through each hub. Cities without any hubs can be ignored
at this moment because of flow conservation. Since there is 1 infeasible case when the standard
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deviation is 10% and 3 infeasible cases when the standard deviation is 20%, we decide to pay more
attention to identify the bottleneck of the system for those infeasible cases. The details of the
bottleneck are shown in Table 2.9.

Table 2.9: Identifying the bottleneck of the network system

Standard deviation Scenario# Bottleneck

10% 3 10,19,21,27

20% 7 19,21,27

20% 8 15,19,21,27

20% 10 10,19,21,27

Different cases have different bottlenecks due to the volume of demand. Hubs at sites 19, 21
and 27 are the bottlenecks of all 4 cases meaning they have higher priority for investment if we
want to upgrade and maintain a robust system. One interesting observation is that the slack of
small hub is exactly the same as the slack of large hub in scenario 3 and scenario 10 meaning we
can upgrade either small hubs or large hubs in order to get a feasible solution. Essentially we just
need additional capacity along the path containing those hub locations and the continuous routing
variables provide the flexibility to use the capacity allocation.

Next we analyze the model from a stochastic point of view by calculating several common mea-
sures including here-and-now (RP), wait-and-see (WS), and expected value of perfect information
(EVPI). RP value is just the objective value of the stochastic model. WS is the weighted objective
value of reacting with perfect foresight, that is, we solve each scenario in the deterministic model
and take the expected value based on their scenario probabilities and respective objective values.
EVPI measures the difference between RP and WS, that is, how much can we improve the quality
of decision if we have perfect information, or, in our case, we had known static flow volumes. EVPI
= 158,485 and 298,033 for standard deviation 10% and 20%, respectively. As expected, the more
variations in the model, the more valuable the information. The computational viability of the
stochastic model is reported in Table 2.10. The allowable optimality gap is set to 1% except for
the first model with 90 flows that is solved to optimality.

Table 2.10: Computation times and model statistics for the stochastic model

# of flows # of binary # of continuous # of equations computation time

90 111 1,245,902 676,281 54 mins

132 111 1,820,882 979,341 2 hrs 16 mins

182 111 2,505,382 1,339,881 2 hrs 27 mins

240 111 3,299,402 1,758,101 4 hrs 10 mins

306 111 4,202,942 2,233,641 5 hrs 11 mins

380 111 5,216,002 2,767,181 6 hrs 28 mins
∗ Standard deviation is 10%
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2.4.3 Computation comparison

In order to obtain a high quality solution faster, two different sets of feasibility cuts are added. In
order to explain these cuts, we first define sets Soi = {j : tij ≤ θ, j 6= i} and Sol = {j : tjl ≤ θ, j 6= l}
representing the feasible one step jumps from sources and into destinations, respectively. Two
feasibility cuts added in the model are as follows:∑

z

∑
j∈Soi

Ujz · Yjz ≥
∑
l,l 6=i

wil ∀{i} (2.26)

∑
z

∑
j∈Sol

Ujz · Yjz ≥
∑
i,i 6=l

wil ∀{l} (2.27)

Equation 2.26 and 2.27 ensure construction of hubs near source and sink locations, ie. within a
feasible trip distance, with sufficient capacity for accommodating all flow out from sources and into
sinks. We compared computation times in Figure 2.3 using the feasibility cuts mentioned above.
Notice that about 30% of computation time can be saved using these feasibility cuts when the
number of selected cities is less than 20. Future research could explore developing and implementing
additional cuts for Benders Decomposition and the L-shaped method. An appropriate problem for
Benders Decomposition is a problem with many continuous variables and relatively few integer
variables. The separable continuous-variable, routing subproblems for each scenario provide a
natural platform for applying the method.
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Figure 2.3: Analysis on the computation time

2.5 Conclusions

Long haul trucking constitutes a major segment of the U.S. logistics system. Long intercity
distances and the desire to reduce deadheading yield long routes that keep drivers on the road for
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extended periods. That results in high driver turnover and intermittent movement of freight. A
hub-based relay network is proposed wherein drivers can normally return to their base on a daily
basis while coordinated scheduling would allow more continuous movement of freight and potentially
improved city logistics for final delivery. Deterministic and stochastic demand versions of a mixed
integer programming model are developed to determine the location of hubs, hub capacity, and load
routing. The models are shown to be computationally feasible for mid-sized problems. Network
topology is shown to be sensitive to uncertainty but more so in the sizing of hubs than the location.
It appears advisable to add sufficient capacity to the hubs to cover potential variability in the
shipping volume.

On top of that, network topology is also sensitive to various parameters such as maximum trip
duration, overtime penalty for multi-day trips and hub unit cost. Robustness of, and bottlenecks
in, the stochastic system are examined. The system is found to become more and more vulnerable
as variation increases. Bottleneck and slackness tests provide an alternative approach to upgrade
the system. Feasibility cuts based on hub capacity are generated to test computation efficiency.
The model with additional feasibility cuts works well and saves around 30% of computation time
when the number of flows is less than 380.

Our study is subject to a few limitations which suggest future research directions: Firstly,
developing additional good feasibility cuts that can be added in the master problem of L-shaped
method. Secondly, Instead of using 10 scenarios to approximate the uncertain demand, we can have
more scenarios using Sample Average Approximation (SAA). Thirdly, in-sample and out-of-sample
stability tests can be conducted to validate the effectiveness of the approximation. Concretely, we
can generate different set of scenarios and solve the stochastic problem with first-stage decision
variables either fixed or not fixed. The effectiveness of the approximation can be evaluated by
comparing the optimal objective values. Last but not least, heuristics can be used when solving
large scale problem instances. There can be two stages in the heuristic algorithms: hub decision
stage and routing decision stage. In hub decision stage, we can add one hub a time and monitor the
changes in the objective value. Alternatively, we could begin with a dense set of hubs and iteratively
remove hubs in a greedy fashion. In the routing decision stage for a given supplier and customer,
there can be multiple routes constructed from different highway segments or using different hub
sequences. If the system chooses a particular segment of highway or hub, then all routes that do
not include that segment of highway or hub should be eliminated.
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CHAPTER 3. A MULTI-STAGE STOCHASTIC PROGRAMMING FOR
LOT-SIZING AND SCHEDULING UNDER DEMAND UNCERTAINTY

A stochastic lot-sizing and scheduling problem with demand uncertainty is studied in this
paper. Lot-sizing determines the batch size for each product and scheduling decides the sequence
of production. A multi-stage stochastic programming model is developed to minimize overall system
costs including production cost, setup cost, inventory cost and backlog cost. We aim to find the
optimal production sequence and resource allocation decisions. Demand uncertainty is represented
by scenario trees using moment matching technique. Scenario reduction is used to select scenarios
with the best representation of original set. A case study based on a manufacturing company
has been conducted to illustrate and verify the model. We compared the two-stage stochastic
programming model to the multi-stage stochastic programming model. The major motivation
to adopt multi-stage stochastic programming models is that it extends the two-stage stochastic
programming models by allowing revised decision at each period based on the previous realizations
of uncertainty as well as decisions. Stability test and weak out-of-sample test are applied to find
an appropriate scenario sample size. By using the multi-stage stochastic programming model, we
improved the quality of solution by 10% - 13%.

3.1 Introduction

Production planning aims to determine the best allocation of production resources to meet
demand over a time period with a limited amount of production capacity. Based on the length,
production planning decisions can be categorized into three different terms: long-term, medium-
term and short-term. Facility location design and resource allocation are considered as long-term
decision making problems. Medium-term planning considers production quantity on a monthly
basis, and short-term planning involves making decisions such as day-to-day schedule of activi-
ties and job sequencing. In the classical hierarchical decision-making environment, lot-sizing and
scheduling decisions take place in the medium-term planning levels that usually span about half
an year (Karimi et al., 2003; Özdamar and Birbil, 1998). Over the entire production horizon, the
market and manufacturing configurations might change and therefore, considering uncertainty and
designing a robust production plan are crucial in the lot-sizing and scheduling problem.

The major motivations for this paper can be summarized as follows: First, lot-sizing and schedul-
ing problems have been widely applied in industry. Gupta and Magnusson (2005) studied a lot-sizing
and scheduling problem confronted by a large manufacturing company that produces sandpaper
rolls of different grades or roughness. Bitran and Gilbert (1989) reviewed the lot-sizing and schedul-
ing problem using a chemical application. In the field of chemicals, setup cost takes place when it is
necessary to scrub out a machine between the production of two products that come from different
families. Silva and Magalhaes (2006) focused on a lot-sizing and scheduling problem in a company
that produces acrylic fiber for textile industry. The problem arises because a changeover occurs
between two lots of products due to tool wear. Second, little attention has been paid to stochastic
lot-sizing and scheduling problem, especially, multi-stage stochastic lot-sizing and scheduling prob-
lem. The Lot-sizing and scheduling problem is an extension of lot-sizing problem which considers



www.manaraa.com

26

production sequence. Harris (1990) introduced a single-item lot-sizing model with deterministic
static demand. The goal is to minimize overall costs include ordering and inventory. Brahimi
et al. (2006) reviewed both uncapacitated and capacitated single item lot-sizing problem. Different
mathematical formulations and extensions of real world applications are studied. The problem
we focus in this paper is called the capacitated lot-sizing and scheduling problem with sequence
dependent setups (CLSD). It is a variation of the CLSP which incorporates dependent setups.
Kaczmarczyk (2011) considered a lot-sizing and scheduling problem that allows only one setup in
each time period. Their formulation includes multi-product and identical parallel machines. Kimms
(2012) proposed a multi-level lot-sizing and scheduling problem with dynamic demand. Multi-level
production means the final product in one stage can be used as raw material in the next stage.
However, these papers considered only the deterministic lot-sizing and scheduling problems which
may not reflect the reality. This point serves as a major motivation for this research.

Production plan can be highly affected by the various uncertainties such as yield, demand and
defective rate. Alem et al. (2018) used the lot-sizing and scheduling problem as an application to
compare the performances and results of stochastic approach with robust optimization approach.
The advantage of each approach was assessed via a Monte Carlo simulation procedure. Rahdar
et al. (2017) proposed a two-stage trilevel optimization model with a rolling horizon. Demand and
lead time uncertainty are studied. Hu and Hu (2016) proposed a two-stage stochastic programming
approach for the lot-sizing and scheduling problem under demand uncertainty. They proved that
the stochastic model outperforms the deterministic model and considering uncertainty is important.
Ramaraj et al. (2017) studied multiple uncertain parameters using a two-stage stochastic program-
ming model. However, the main drawback of the two-stage stochastic programming technique is
it does not take into account the sequential decision making due to the multiple periods in the
planning horizon. That is, all of the resource decisions have to be done by the beginning of the
second period and no makeup/corrective decision is allowed when new information is revealed (Hu
et al., 2017). Unlike the two-stage model, the multi-stage stochastic programming model explicitly
addresses and incorporates the sequential relationship of the decisions over the multiple periods in
the planning horizon (Li et al., 2006b). The trade-off is that the computational complexity of the
multi-stage stochastic programming model is much higher compared to the two-stage stochastic
programming model. Therefore, the problem size that can be solved is limited. Huang and Ahmed
(2009) compared the two-stage model with multi-stage model and used heuristics to derive the
bound for the value of multi-stage stochastic programming (VMS). The results show that even a
feasible solution for the multi-stage model can be much better than the optimal solution for the
two-stage model.

The major contributions of this study can be summarized as follows: Firstly, we proposed a novel
multi-stage stochastic programming model to deal with demand uncertainties. We demonstrated
that for a multi-period problem, it is more suitable to use a multi-stage stochastic model. Secondly,
stability test is used to identify the best scenario size, which is a significant improvement from the
existing literature. Thirdly, we quantitatively measured the improvement of results using multi-
stage stochastic programming model. Finally, we provided guidelines to choose the most suitable
approach for decision makers based on the results and computational performance.

The remainder of this paper is organized as follows: problem statement and model formula-
tions for both deterministic model and multi-stage stochastic programming model are presented
in section 3.2. The numerical results and model comparisons are reported in section 3.3. Finally,
conclusions, limitations, and future works are discussed in section 3.4.
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3.2 Model formulation

The deterministic model and multi-stage stochastic programming model are introduced in this
section. In a lot-sizing and scheduling problem, each time slot typically represents a week or a
month while the overall production horizon is usually no longer than half an year (Guimarães
et al., 2014; Drexl and Kimms, 1997). We aim to find the best production decisions such that
the overall cost is minimized. The deterministic model is presented followed by the multi-stage
stochastic programming model in which demand uncertainty is considered. There are two types
of decisions in the multi-stage model: regular time production decisions and recourse decisions.
The regular time production decisions need to be determined at the beginning of each time slot
while the recourse decisions include overtime production, inventory, and backlogs are made after
the realization of uncertainty in the current stage.

3.2.1 Problem statement

The problem we address in this paper can be described as follows: manufacturers acquire raw
material from up-stream suppliers and produce final products for downstream plants or customers.
Orders can be placed at the beginning of each month. According to resource availability, decision
makers need to design a good production plan so that the costs can be minimized. Two different
resource capacities are: time capacity on the machine and production quantity limitation. Un-
met demand can be fulfill later since backlog is allowed. Decision variables include regular time
production, overtime production, production sequence, inventory and backorder. The regular time
production is limited by both the time capacity on the machine and resource availability. Overtime
production is proportional to the regular time production. Production sequence is really critical
because setup is sequence dependent and can be carried over to the following period. In other
words, different production sequences will result in different resource requirements. Inventory and
backorder can then be evaluated.

In the deterministic model, parameters are fixed and known. In the stochastic model, demand
is uncertain and represented by scenarios. In the stochastic model, regular time production and
production sequence need to be determined in the presence of uncertainty while overtime production
decision are made after uncertainty is realized. Scenario sample size analysis and weak out-of-sample
stability test aim to identify a good scenario sample size. The analysis of the two-stage stochastic
programming model demonstrates the importance of considering uncertainty. The comparisons
between two-stage and multi-stage stochastic programming models include computation time and
objective value.

3.2.2 Mathematical notations

The mathematical notations for the deterministic model are included in Table 3.1. These
parameters are fixed and known in the deterministic model. The parameters and variables in the
stochastic model are scenario-based and the means of those parameters are same as the deterministic
model.

3.2.3 Model assumptions

The assumptions are listed as follows:
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• Inventory and backlog are allowed which indicate demand does not need to be fulfilled all the
time. The initial values of inventory and backlog are assumed to be zero.

• Demand is time independent, so the realization of demand in current stage does not depend
on the previous realization.

• The uncertain demand is realized at the beginning of each period, inventory and backorder
levels will be measured at the end of each production period.

• The regular time production and overtime production are resources limited. The former has
time and batch size capacities while the latter only has batch size limitation.

• The regular time production and overtime production share the same setup. Since the actual
demand is realized after production started, the overtime production serves as the recourse
for the baseline production.

• A setup is required between products from different families. In addition, a setup can be
carried over between two consecutive production periods. Therefore, the last setup in one
period will be the first default setup in the following period.

3.2.4 Deterministic model

The deterministic model aims to minimize the overall system costs, including regular time
production cost, overtime production cost, setup cost, inventory cost, and backlog cost. The first
and second terms in the objective function are the regular time production cost and overall setup
changeover cost, respectively. It should be noted that there is no setup between products from the
same family. The third term is the overtime production cost. The last two terms are the overall
inventory holding cost and the backlog cost, respectively. There are three possible cases for the
inventory and the backlog costs. First, they all equal to zero meaning current demand is met and
no extra product is manufactured. Second, inventory is positive and backlog is zero indicating
current demand is met and extra products are manufactured for future demand. Third, inventory
is zero and backlog is positive showing that the production capacity is not sufficient to satisfy the
demand requirement. The last production time is not included in this model because we add it as
a dummy period.

min ζ =

I∑
i=1

T∑
t=1

pri ∗Xi,t +
I∑

i=1 i 6=j

J∑
j=1

T∑
t=1

sci,j ∗ Yi,j,t

+

I∑
i=1

T∑
t=1

poi ∗Oi,t +

I∑
i=1

T∑
t=1

hi ∗ Ii,t +

I∑
i=1

T∑
t=1

bi ∗Bi,t

(3.1)

3.2.4.1 Constraints of deterministic model

Equation 3.2 and 3.3 are product flow conservation constraints. The total amount of production
plus inventory from the previous time period equal to the total demand plus the current inventory.
The inventory in these two constraints can be either the extra inventory or the backlog demand
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Table 3.1: Notations for the deterministic model

Subscripts

i 1, 2 · · ·N Material index

j 1, 2 · · ·N Material index

t 1, 2 · · ·T + 1 Time period index

Parameters

di,t Demand of material i at time t

hi Holding cost of each material i for one time period

bi backorder cost of each material i for one time period

capt Time capacity on the machine at time t

pi Manufacturing time of each material i

pri Regular time manufacturing cost of each material i

poi Overtime manufacturing cost of each material i

qi,t The maximum regular time batch size of product i at t

sci,j Setup changeover cost from material i to j

sti,j Setup time from material i to material j

N Number of material families

Decision Variables

Ii,t Inventory quantity of material i at the end of time t

Bi,t Backorder quantity of material i at the end of time t

Xi,t Regular production quantity of material i during time t

Oi,t Overtime production quantity of material i during time t

Yi,j,t Binary variable takes value 1 if there is a setup changeover

from material i to material j during time t

Zi,t Binary variable takes value 1 if setup of material i carried

over from previous time slot to time t

Vi,t Sequence of production in time period t

that can be fulfilled later. There is no inventory coming into the first time period as we assume
that initial inventory and backlog are both zero.

Xi,t +Oi,t = di,t + Ii,t −Bi,t ∀i, t = 1 (3.2)

Ii,t−1 −Bi,t−1 +Xi,t +Oi,t = di,t + Ii,t −Bi,t ∀i, t = 2 · · ·T + 1 (3.3)

Equation 3.4 restricts that the regular time production quantity will not exceed the maximum
regular time production quantity which is qi,t. Recall that only one setup is allowed in each

product family indicating Zi,t +
∑J

j 6=i Yj,i,t ≤ 1. If both terms are zero, then product i cannot be

manufactured in time period t. If Zi,t = 1 and
∑J

j 6=i Yj,i,t = 0, then material i will be the first
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product on the assembly line. If Zi,t = 0 and
∑J

j 6=i Yj,i,t = 1, then material i will be manufactured
after material j.

Xi,t ≤ qi,t ∗ (Zi,t +
J∑
j 6=i

Yj,i,t) ∀i, t (3.4)

Total machine time capacity, denoted by capt, is the maximum regular time resource on the
machine. Equation 3.5 ensures that the total time for the regular production and setup changeover
time cannot go beyond the total machine time capacity. Equation 3.6 sets a capacity limit on
the overtime production quantity. Typically, α ∗ Xi,t puts a production quantity capacity on the
overtime production (Zhang et al., 2011).

I∑
i=1

pi ∗Xi,t +

I∑
i=1 i 6=j

J∑
j=1

sti,j ∗ Yi,j,t ≤ capt ∀t (3.5)

Oi,t ≤ α ∗Xi,t ∀i, t (3.6)

Equation 3.7 states at the beginning of each time period, a setup is carried over from the
previous time period. Equation 3.8 states that the setup flow going into material i equals to the
one coming out of it. One easy example will be producing the same product during the entire
production horizon meaning Zi,t = Zi,t+1 = 1 and all of the Y variables are zero because there is
no setup changeover.

I∑
i=1

Zi,t = 1 ∀t (3.7)

Zi,t +

J∑
j 6=i

Yj,i,t = Zi,t+1 +

J∑
j 6=i

Yi,j,t ∀i, t = 1 · · ·T (3.8)

Equation 3.9 requires that no production activity is allowed in the last dummy period except
that the setup is carried over from the previous time period. Equation 3.10 is one of the sub-
tour elimination constraints which has been widely applied in the traveling salesman problem. It
enforces that there is only a single tour covering all the given nodes and no disjointed tours are
allowed. Figure 3.1a shows an example of sub-tour. A disjointed tour (1-2-3-1) is not allowed in
the Traveling Salesman Problem (TSP). Equation 3.10 makes sure that each product will be visited
once and only once. The feasible route in Figure 3.1b assigns V1,t = 1, V2,t = 2, · · · , V5,t = 5.

Xi,t = 0 ∀i, t = T + 1 (3.9)

Vj,t ≥ Vi,t + 1−N ∗ (1− Yi,j,t) ∀i, j 6= i, t (3.10)
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(a) An example of sub-tour
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(b) An example of feasible route

Figure 3.1: A sub-tour and feasible solution to the traveling salesman problem

3.2.5 Multi-stage stochastic programming model

In this study, variables Xi,t , Yi,j,t , Zi,t , and Vi,t are the baseline production decisions which
involve the regular time production quantity and sequence of production. Decision variables Oi,t,s
, Ii,t,s , and Bits are recourse decisions. Demand is the uncertain factor under investigation since it
is among the most common uncertain factors in the production design problem. Uncertainties are
usually represented with discrete probabilistic scenarios since continuous distributions are computa-
tionally challenging to implement in the model. We use a number of scenarios, i.e, S = {µ1, · · · , µs}
and corresponding probability νs to represent original distribution. Each realization represents the
demand in that particular time period while the series of realizations disclose the evolution of
uncertain demand. In each time period, multiple realizations will be generated to capture the sta-
tistical properties of continuous distribution. The multi-stage stochastic programming model aims
to design a production planning with uncertain demand considered explicitly. All of the variables
in the deterministic model need to be slightly changed by adding a scenario index s which have
probability νs. The multi-stage stochastic programming model is formulated as follows:

min ζ =
S∑
s=1

νs ∗ (

I∑
i=1

T∑
t=1

pri ∗Xi,t,s +

I∑
i=1 i 6=j

J∑
j=1

T∑
t=1

sci,j ∗ Yi,j,t,s

+

I∑
i=1

T∑
t=1

poi ∗Oi,t,s +

I∑
i=1

T∑
t=1

hi ∗ Ii,t,s +

I∑
i=1

T∑
t=1

bi ∗Bi,t,s)

(3.11)

Xi,t,s +Oi,t,s = di,t,s + Ii,t,s −Bi,t,s ∀i, t = 1, s (3.12)

Ii,t−1,s −Bi,t−1,s +Xi,t,s +Oi,t,s = di,t,s + Ii,t,s −Bi,t,s ∀i, t = 2 · · ·T + 1, s (3.13)
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Xi,t,s ≤ qi,t ∗ (Zi,t,s +
J∑
j 6=i

Yj,i,t,s) ∀i, t, s (3.14)

I∑
i=1

pi ∗Xi,t,s +

I∑
i=1 i 6=j

J∑
j=1

sti,j ∗ Yi,j,t,s ≤ capt ∀t, s (3.15)

Oi,t,s ≤ α ∗Xi,t,s ∀i, t, s (3.16)

I∑
i=1

Zi,t,s = 1 ∀t, s (3.17)

Zi,t,s +

J∑
j 6=i

Yj,i,t,s = Zi,t+1,s +

J∑
j 6=i

Yi,j,t,s ∀i, t = 1 · · ·T, s (3.18)

Xi,t,s = 0 ∀i, t = T + 1, s (3.19)

Vj,t,s ≥ Vi,t,s + 1−N ∗ (1− Yi,j,t,s) ∀i, j 6= i, t, s (3.20)

Equation 3.11 along with Equation 3.12 - 3.20 are based on the deterministic model by adding
the scenario index s to the equations in the deterministic model. The only difference is that baseline
production can be determined at the beginning of each time period given previous realizations of
uncertainty. It should be noted that there are T time periods in the model and production process.
The reason to include last dummy time period is to capture the setup carried over from T to T +1.
We assume that there is no demand or production in the last time period. If T + 1 is not added,
then Equation 3.8 and 3.18 will be violated. Besides Equation 3.11 - 3.20, we need an additional
type of constraint in the multi-stage model, called non-anticipativity constraints.

As mentioned before, continuous distribution is computationally challenging to implement.
Therefore, the uncertainty was approximated with multiple scenarios. The goal of this process is to
simplify the problem as well as capture the statistical properties of original distribution (Høyland
and Wallace, 2001). In this paper, the planning horizon has multiple periods which significantly
increases the number of scenarios. A scenario reduction procedure has been implemented to identify
a representative subset of scenario so that essential features and computational tractability can be
maintained (Heitsch and Römisch, 2003). The details of moment matching and scenario reduction
techniques are discussed in the detail in the case study section.

3.3 Case study

In order to demonstrate and validate the multi-stage stochastic programming model proposed
in this paper, we apply a case study to a braking equipment manufacturing plant located in Italy.
An analysis shows that disturbances affect both upstream and downstream manufactories. Hence, a
robust production design is required to balance between production profit and customer satisfaction.
In this case study, the manufacturing plant collects two different types of raw material, P1B and
P2B, and produces three final braking productsP1, P2 and P3. The overall production horizon for
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the lot-sizing and scheduling problem is usually shorter than half an year, while each time slot is
commonly on the weekly or monthly basis (Guimarães et al., 2014; Drexl and Kimms, 1997).

3.3.1 Data sources

The case study in this paper is a single-level, multi-product, and multi-period stochastic pro-
gramming problem. Single-level means there is no semi-finished product. Probability density
functions of demand are fitted with historical data. Demands of three final products P1, P2, and P3

follow Weibull distribution. We assume that the demand is both product and period independent.
The details of statistical properties are shown in Table 3.2.

Table 3.2: Statistical properties of monthly demand

Properties P1 P2 P3

PDF Weibull Weibull Weibull

Scale 518 38 169

Shape 1.51 2.76 2.27

Mean 467.25 33.82 149.70

Variance 99422 175.4231 4877.8

Skewness 1.06 0.25 0.47

Kurtosis 4.35 2.78 2.98

Production sequences can make significant impact on overall production cost as changeovers
are sequence dependent. Therefore, it becomes essential to identify the optimal production plan.
Setup changeover time and manufacturing time are listed in Table 3.3 and 3.4, respectively. Setup
cost can be derived by multiplying setup time with a constant factor (James and Almada-Lobo,
2011).

Table 3.3: Setup changeover time (mins/setup)

P1 P2 P3

P1 0 270 90

P2 180 0 270

P3 90 180 0

Table 3.4: Costs and manufacturing time for different products

P1 P2 P3

Manufacturing time (mins/unit) 6 6.6 7.2

Inventory cost ($/unit month) 0.16 0.15 0.38

Regular production cost ($/unit) 254.08 254.08 254.08
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Inventory costs and time capacities are included in Table 3.4 and 3.5, respectively. Gnoni
et al. (2003) claimed that time capacity is the bottleneck and critical resource in production. The
regular time production costs are shown in Table 3.4. The overtime manufacturing cost and backlog
cost are based on the regular manufacturing cost (Zhang et al., 2011; Rego and Mesquita, 2015).
Maximum overtime production quantity is setup to 20% of regular production quantity as large
overtime allowance reduces efficiency and increases the chance of injury.

Table 3.5: Time capacities on the machine (mins)

Month Capacity

1 6087

2 5367

3 6087

4 6087

5 4407

6 4407

Identifying the optimal production quantity as well as sequence are two critical decisions in
production problems. Park (2005) did a sensitivity analysis to explore the impact of production
capacity resource on production decisions. In this study, similar experiment settings have been
employed.

3.3.2 Scenario generation and reduction

Representing uncertain parameters with continuous distributions has proven to be computa-
tionally challenging for a stochastic model (Feng and Ryan, 2013). A common way to simplify
and approximate the continuous distribution is to discretize it with a number of realizations. This
process is called scenario generation. Scenario size increases dramatically as the number of time
horizons increase which affects the tractability of the solution. Therefore, it is common to select a
subset of representative scenarios from the entire set. This process is known as scenario reduction.

3.3.2.1 Scenario generation technique

Scenario generation technique is briefly reviewed in this section. Ψ includes all the statistical
properties we want to consider in the model. In this study, ψ belongs to the set Ψ which includes
the first four moments. ωψ is the weight for statistical property ψ which measures the impor-
tance of matching mathematical expression (Heitsch and Römisch, 2003). fψ(π, Pr) represents
the mathematical expression for each ψ, and V ALψ is the input parameter for ψ. The goal of
this model is to generate the discrete realizations πψ with probabilities Prψ so that the squared
differences between mathematical expression and given input is minimized. For example, if we
want to approximate a normal distribution, then Ψ contains statistical properties such as mean
and variance. V ALψ is the given mean/variance of the normal distribution as a input parameter.
fψ(π, Pr) is the mathematical expression for mean/variance which can be expressed as

∑
ψ πψPrψ

or
∑

ψ Prψ ∗ (πψ −
∑

ψ πψPrψ)2. Equation 3.21 aims to minimize the overall weighted squared
distance between the specified value of the statistical property and the value of the mathematical
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expression. An objective value of zero means that the discrete realizations match with the specified
statistical property perfectly. Equation 3.22 and 3.23 state that the probability of all realizations
should add up to 1 and be positive.

min
π,Pr

∑
ψ∈Ψ

ωψ ∗ (fψ(π, Pr)− V ALψ)2 (3.21)

∑
Pr ∗M = 1 (3.22)

Pr ≥ 0 (3.23)

In this paper, we consider the first 4 moments: mean, variance, skewness and kurtosis. A
non-linear objective function allows to reset the initial values and execute the model until a good
solution is obtained. We assume that the demand of final material are both period and product
independent. Multi-product and multi-period scenario trees are generated in this paper. Three
products, six time periods and four statistical properties lead to |Ψ| = 72 specified statistical
properties. The minimum number of realizations in each period is four, and we choose to create
five realizations in each period since we need to balance the trade-off between the quality of the
solution and the complexity of the problem. The GAMS (General Algebraic Modeling System)
is used to solve this non-linear optimization problem. Due to the fact that there can be multiple
optimal solutions, we created four different scenario trees each has 56 scenarios in order to compare
and validate the results. All the scenario trees have objective values of zero implying that the
discrete realizations have a perfect match with the specified properties of continuous distribution,
and satisfactory results are reached (Høyland and Wallace, 2001). It should be noted that we only
include the realizations in the first period since the demand is period-independent.

3.3.2.2 Scenario reduction technique

Each scenario tree we generated has 56 scenarios and solving a NP-Hard problem with this
amount of scenarios becomes computationally intractable. Therefore, we adopted scenario reduction
to reduce the computational complexity. There are two types of scenario reduction techniques, one
is called fast forward selection (FFS) and the other one is called backward selection (BS). The FFS
outperforms the BS when the size of selected scenarios is no more than 25% of the size of original
scenarios. FFS is used in this paper as sample size after reduction is approximately 1% of original
scenario size. We decided to keep different scenario sample sizes and test the stability as well as
the quality of scenario reduction.

S is a scenario set in which s = 1 · · · S. Each scenario can be represented by µs which has
probability νs. L function measures the euclidean distance between two different scenarios. For

each scenario, we calculate the overall weighted distance to the rest of scenarios, which is WD
[η]
k .

U [η] contains all of the unselected scenario up to iteration η. It should be noted that when η = 1, all
of the scenarios are unselected and Φ is empty. In detail, we measure the euclidean distance between
each pair of scenario k and l where k,l ∈ S. The overall weighted euclidean distance is stored in

WD
[η]
k . Then we find the scenario with minimum overall distance and remove it from the unselected

scenario set U. Next, distance matrix is updated because of the scenario we removed. Next scenario
is selected using the same approach until enough scenarios are selected. After scenario selection,
we assign the probability of those unselected scenario to the closest selected scenario. Feng and
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Table 3.6: Notations for FFS

S Scenario set

µs Scenario s

νs The probability of scenario s

L(·) Nonnegative function L2-norm

D
[η]
k,l

Distance between scenario k and sce-

nario l at iteration η

WD
[η]
k

Overall weighted distance of scenario

k at iteration η

U [η] Set of unselected scenarios up to it-

eration η

Φ Set of selected scenarios after reduc-

tion

Ryan (2013) studied five different sample sizes 10, 20, 30, 50, 100. We decide to keep 10, 15, 20, 30,
40, 80, 120 and 150 scenarios after reduction and reasons is two-fold: First, we want to test how
scenario sample size affects the objective value. Second, we want to check if the results become
stable as scenario sample size increases. One interesting observation is that for any i, j ∈ {10, 15,
20, 30, 40, 80, 120, 150}, if we let λi indicates the scenario sample with size i, then λi ⊂ λj ∀i < j.
For example, the scenario sample with size 30 is a proper subset of the scenario sample with size
40. This is due to that FFS algorithm is a construction process. Therefore, the sample under the
larger size scenario is built upon the sample with the smaller size.

3.3.3 Analysis for the deterministic case

Results of the deterministic model are shown in Figures 3.2a and 3.2b. The objective value
decreases as the maximum batch size increases because we have more regular time production
resources. All of the production activity can be done in the regular time when the maximum batch
size is 100% of the mean demand. Backorder exists when the maximum batch size is smaller than
85% of the mean demand. We have two different production capacities in this paper, which are the
maximum batch size capacity and the maximum time capacity. When the maximum batch size is
small, Equation 3.4 is the binding constraint and that is why objective value changes dramatically
as we change qi,t. When the maximum batch size is large enough, the overall cost becomes stable
since the binding constraint becomes Equation 3.5, that is, we are running out of production time
resource. Utilization of machine time ranges from 65% to 100% depending on the maximum batch
size.

Different maximum batch sizes result in different production sequences, but those production
sequences have similar setup cost, which means the maximum batch size only affects the production
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(b) Objective value in the deterministic model

Figure 3.2: Results of the deterministic model

schedule not the setup cost. One of the production sequences is shown in Table 3.7. It should be
noted that the last setup in one period becomes as the first setup in the next period since we
assumed that setup can be carried over from period to period. In order to save setup changeover
cost, setups are typically saved and reused in the following time period . Note that the setup
cost decreases when the maximum batch size changes from 110% to 120% indicating that extra
products have been produced ahead of time in order to balance between inventory cost and setup
cost. Carrying extra products increases inventory cost, but it can be justified with huge setup cost.
In this case, producing and carrying extra products for future demand become beneficial.

Table 3.7: An optimal production sequence

Products T1 T2 T3 T4 T5 T6

1 1 2 3 1 2 2

2 3 1 2 3 1 3

3 2 3 1 2 3 1

3.3.4 Analysis for the stochastic case

Four different scenario trees τ1 to τ4 were generated using moment matching technique as
detailed in 3.3.2.1. The objective values equal to zero in the moment matching method indicating
that those scenarios match the continuous distribution perfectly. Scenario reduction is used to
select a subset which has a good representation of the original scenario set. In order to compare
the solution for the two-stage model with the one for the multi-stage model, we need to find
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a reasonable scenario sample size. Solving the multi-stage stochastic programming problem to
optimality is usually computationally intractable, so we decide to conduct stability test using the
two-stage model and then compare the solution with the multi-stage model. The stability test
aims to find a good scenario sample size such that the objective value is stable. Intuitively, when
the scenario sample size is small, we only keep the scenarios in the central of the set and omit
other scenarios that is far from center. On the other hand, as we increase the scenario sample size,
the representativeness improves and problem becomes more complicated. Balancing the quantity
of scenarios and computational complexity is an important step. The details of the relationship
between sample size and objective value are included in Figure 3.3.
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Figure 3.3: Scenario sample size stability test

The horizontal axis is the number of scenarios after reduction and the vertical axis is the
objective values. At the beginning, the objective value has an increasing trend implying that
scenario sample sizes like 10, 15, and 20 do not have a really good representation of the original
distribution. For example, we may lose some extreme large values or extreme small values when
the scenario sample size is small since the focus on is the centroid of the set. As the sample
size increases, the mathematical model starts incorporating a more accurate representation of the
continuous distribution. In conclusion, when the sample size is smaller than 30, all of scenario
trees agree that sample size is insufficient due to increasing trend in the objective value. But
when the sample size is bigger than 30, four scenario trees start having different behaviors since
different scenario trees cover different aspects of the distribution. We decide to select 30 as the
sample size. In addition, when we change the scenario sample size from 30 to 150, range of the
objective value is really stable although the result of an individual tree changes randomly. The
randomness comes from the fact that for a multi-period tree, one cannot simply compare solutions
from different trees, as the nodes beyond the root do not coincidec(Heitsch and Römisch, 2003).
The reason why variation, in Figure 3.3, increases as we enlarge the sample size is that four different
scenario trees have similar representation of the centroid of the continuous distribution but other
representations like variance, skewness, and kurtosis are slightly different. Hence, when scenario
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sample size is large, different scenario trees will have different realizations. Next, we conducted
weak out-of-sample stability test which is defined as follows:

f(Λi, τj) ≈ f(Λj , τi)

Λi includes all the baseline production decisions at root for scenario tree τi. The purpose of this
test is to verify whether the scenario sample size we pick in the stability test is good enough. If the
scenario tree is weak out-of-sample stable, we should get approximately the same optimal objective
values when we solve one scenario tree with the root decisions fixed to the value we get from another
tree. The details of weak out-of-sample stability test are included in the Table 3.8. The biggest
difference can be found by applying the root decisions Λ4 to the scenario tree τ1, and vice versa.
Since the gap is less than 5%, we claim that our scenario sample size stability test is valid.

Table 3.8: Weak out-of-sample stability test

τ1 τ2 τ3 τ4

Λ1 1,432,658 1,397,574 1,402,861 1,372,923

Λ2 1,434,616 1,396,084 1,403,776 1,372,938

Λ3 1,451,086 1,414,833 1,393,577 1,386,877

Λ4 1,434,973 1,396,948 1,403,319 1,372,113

Comparison of different models can be conducted after obtaining the scenario sample size.
Expected value of perfect information (EVPI) measures how much money the perfect information
worths and value of stochastic solution (VSS) implies the difference between the deterministic model
and stochastic model. Clearly, large EVPI and VSS indicate it is critical to consider uncertainty.
EVPIτ range from 195,684 to 211,513 which are approximately 15% of the two-stage stochastic
objective value and VSSτ range from 210,057 to 256,162 which are approximately 15% to 18%
of the two-stage stochastic objective values. Significant EVPI and VSS clearly show that the
two-stage stochastic programming model outperforms the deterministic model and considering the
uncertainty is necessary. Value of multi-stage stochastic programming (VMS) and relative value
of multi-stage stochastic programming (RVMS) are used to measure the improvement of solution
by using multi-stage stochastic programming. Clearly, VMS and RVMS are non-negative since
multi-stage stochastic program is a relaxation of the two-stage stochastic program.

VMS = RP TS −RPMS RVMS =
RP TS −RPMS

RP TS

RP TS and RPMS denote the optimal objective values of the two-stage model and of the multi-stage
model.

However, multi-stage stochastic programming comes at the expense of solving a much larger and
more difficult optimization model and obtains an optimal solution is computationally intractable,
we consider the following lower bound:

VMS ≥ RP TS −RPMS
F RVMS ≥

RP TS −RPMS
F

RP TS
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Where RPMS
F is a feasible solution to the multi-stage stochastic programming problem. The details

of comparison can be found in Table 3.9. By applying the multi-stage stochastic programming in the
field of semiconductor tool production, Huang and Ahmed (2009) reported their RVMS varies from
less than 5% to around 70% depending on the setup. In order to make a fair comparison, we stop
the models at a point where the computation times are around 24 hours and no big improvement in
the optimality gaps. Our RVMS values are slightly larger than 10% meaning that, given 24 hours
decision making time, we can improve our decision quality by more than 10%.

Table 3.9: Comparison of two-stage and multi-stage objective values

RP TS RPMS
F VMSLower RVMSLower Optimality gap

τ1 1,432,658 1,286,643 146,015 10.2% 0.71%

τ2 1,396,084 1,254,663 141,421 10.1% 0.34%

τ3 1,393,577 1,213,515 180,062 12.9% 1.56%

τ4 1,372,113 1,225,938 146,175 10.7% 0.45%

Note that VMS measures the difference between RP TS and RPMS , and this value is also the
difference between the expected value of perfect information to the two-stage model (EVPITS) and
to the multi-stage model (EVPIMS). EVPI measures how much money a decision maker is willing
to pay for the perfect information in the future. A big EVPI means uncertainty is worth to be
incorporated into the decision making process. In this case study, our VMS value is the amount
of savings when perfect information becomes available, which is about 10% of the total cost. It
should be noted that implementing the multi-stage stochastic programming model over the two-
stage model is worthwhile due to 10% cost reduction and the 20-hr computation time is manageable
for a production planning horizon of 6 months

3.4 Conclusions

This paper aims to design a multi-stage stochastic programming model to deal with demand
uncertainty. A manufacturing plant in the automotive industry has been analyzed in the case
study. Scenario generation and reduction techniques have been used to generate scenarios and
reduce scenario sample size. Stability test was conducted to examine whether the scenario sample
has good representation or not. Results of the two-stage stochastic programming model indicate
the importance of considering uncertainty. Improvement in the objective value using multi-stage
model has been analyzed.

Fast Forward Selection is used for scenario reduction to ensure good representation of the
probabilistic distribution. Based on the sampling stability test, scenario size was kept at 30 after
reduction. Compared the deterministic model with the two-stage stochastic programming model,
EVPI and VSS are 15% and 18% of the objective value, respectively. It indicates the importance of
considering uncertainty. VMS and RVMS are measured to compare the two-stage model with the
multi-stage model. Significant VMS indicates big EVPI gap which means significant cost reduction
when the multi-stage stochastic model is used for production planning. A big RVMS implies a
non-negligible percentage difference in the objective value between the two-stage model and the
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multi-stage model. We calculated the lower bounds on VMS and RVMS due to the complexity of
the multi-stage stochastic programming and thus optimality may not be able to achieve. Results
show that the quality of solution can be improved by approximately 10% using the multi-stage
stochastic model instead of the two-stage stochastic model.

In summary, this paper presents a multi-stage stochastic programming model to study the lot-
sizing and scheduling problem under uncertainty. However, our research has following limitations.
Firstly, demand is assumed to be product and period independent. This assumption can be invalid
in reality. For example, demand of some automobile parts can heavily depends on the historical
data. Secondly, multiple uncertain factors can be studied in our future works as we only focus on
one of them. Thirdly, we subjectively determine that the result of scenario sample size is stable
when the changing of the objective value is less than 5% which can be a big gap in some other
fields. Lastly, heuristics can be designed due to high computational complexity of the multi-stage
stochastic programming model. Those limitations should be addressed in our future research.
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CHAPTER 4. A HYBRID STOCHASTIC AND ROBUST OPTIMIZATION
MODEL FOR LOT-SIZING AND SCHEDULING PROBLEMS UNDER

UNCERTAINTIES

Uncertainty is among the significant concerns in production scheduling. It has become in-
creasingly important to take uncertainties into consideration for lot-sizing and scheduling. In this
paper, we adopt the Hybrid Stochastic and Robust Optimization (HSRO) approach in lot-sizing
and scheduling problems in which suppliers have the flexibility of satisfying a fraction of demand
based on the market and their policies. Two types of uncertainties have been considered simultane-
ously: demand and overtime processing cost. Robust optimization is adopted for uncertain demand
and Sample Average Approximation (SAA) technique is applied to solve the stochastic program for
uncertain overtime processing cost. Numerical results based on a manufacturing company has been
conducted to not only validate the proposed hybrid model but also quantitatively demonstrate the
merit of our approach. Sample size stability test and sensitivity analyses on various parameters
have also been conducted.

4.1 Introduction

Efficient and robust production planning is essential for manufacturing companies to stay com-
petitive. Tomotani and de Mesquita (2018) pointed out that lot-sizing and scheduling are closely
related that both decisions have to be made simultaneously to avoid sub-optimal results arising
from considering them separately. As pointed out by Yang et al. (2017), the lot-sizing and schedul-
ing decisions are challenging due to the various uncertainties including material shortage, machine
breakdowns and demand fluctuation. In addition, replenishing inventory, seeking a new material
supplier, purchasing and rearranging machines can be time consuming, so it is almost impossible
to make timely response and adjustments to system oscillations (Fattahi et al., 2015; Pishvaee
et al., 2011). Therefore, the design of lot-sizing and scheduling system must be robust to deal with
uncertainties in the production processes.

Scenario-based stochastic programming approach has been gaining popularity in studying un-
certainties in lot-sizing and scheduling problems. The probability distributions for the uncertain
parameters are estimated and then scenarios are generated based on the modeling assumptions. Taş
et al. (2018) considered stochastic setup time which follows a Gamma distribution and SAA tech-
nique was used to solve this stochastic programming problem. In addition, two heuristic algorithms
were developed and evaluated in the paper. Hu and Hu (2016, 2018) studied a two-stage stochastic
programming approach under demand uncertainty and later, extended to multi-stage stochastic
programing model. The moment matching method was used to generate scenarios. Ramaraj et al.
(2019) studied the similar production problem with demand and raw material quality uncertainties.
However, this approach is only suitable for situations where the underlying probability distribution
of the uncertain variable is known. The major drawbacks of this approach are: First, in some
real-world applications, the decision makers may not have enough historical data to fit accurate
probability distribution functions for the uncertain parameters. For example, it is almost impos-
sible to predict future demand for a new product due to lack of historical data (Keyvanshokooh
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et al., 2016; Scarf, 1957). One good example is to predict future demand for the fashion industry.
A lot of fashion products tend to be unique and hence there is not much historical data for fitting
an appropriate distribution. Secondly, good approximation for continuous distributions requires
a large number of scenarios. In a multi-period problem, overall scenario size grows exponentially
with the number of scenarios in each time period. Although techniques like Fast Forward Selection
(FFS) and Simultaneous Backward Reduction (SBR) have been used to reduce scenario sample
size, important information may be lost during the process (Heitsch and Römisch, 2003). On the
other hand, if scenario sample size is limited due to computational complexity, the accuracy of
prediction for the future stage can be restricted and solutions may not be feasible for some extreme
realizations of uncertainties. Finally, different decision makers may have different attitudes toward
uncertainty. Scenario-based stochastic programming approach focuses on the expected value which
assumes the decision makers care about the average performance of each scenario. However, in
some cases, the decision makers can be more concerned about the worst case scenario than the
average scenario.

To address these drawbacks, Robust Optimization (RO) has been utilized as an alternative
technique to deal with uncertainties. Soyster (1973) assumed that all uncertain parameters would
take their worst-case values within sets and this approach was perceived as overly conservative for
practical implementation. In the mid-1990s, the shortcoming of over-conservatism was addressed
by constrainting the uncertain parameters to belong to ellipsoidal uncertainty set. This approach
only considers outcomes that are likely to happen but results in a non-linear robust counterpart
(Ben-Tal and Nemirovski, 1998, 1999, 2000). More recently, Bertsimas and Sim (2003) proposed
a new robust optimization approach that overcame the issue of high complexity when formulating
the robust counterpart. Concretely, the robust counterpart of a linear programming problem is still
a linear programming problem. The major advantages of using RO are: First, RO is not based on
a probabilistic theory and does not requires extensive amount of historical data to support the pa-
rameter estimation. In other words, this approach does not need knowledge of specific probability
distribution for the uncertain parameters. Second, this RO approach is computationally tractable
because of linear robust counterpart. Curcio et al. (2018) considered adjustable robust optimization
for lot-sizing and scheduling problem under multi-stage demand uncertainty. The results showed
that their algorithm is much better than the deterministic model. Diaz et al. (2017) considered
a production planning problem with uncertain operating and environment conditions. Single and
multi-objective formulation for robust optimization were studied. Results show a significant corre-
lation between robustness and sample size in the performance evaluation.

There are two types of uncertainties considered in this paper. Historical data is available and
reliable to generate scenarios for overtime processing cost and hence we adopt the stochastic pro-
gramming approach for this type of uncertainty. Due to the unpredictable characteristic, we adopt
robust optimization to address demand uncertainty. The major challenge that many companies
face is to predict accurate demand volume. If the demand volume is underestimated, customer
demand may not be satisfied. On the other hand, if the demand volume is overestimated, then
unnecessary inventory cost will incur. Overtime production is highly related to the demand pre-
diction since it helps companies fulfill unpredicted demand in the peak season. The need to study
the integration of these two types of uncertainties has been justified by Davis (1993). The author
identified three major supply chain uncertainties, process uncertainty, and demand uncertainty.
Supply uncertainty depends on the suppliers’ reliability. Process uncertainty is related to the pro-
duction process. Demand uncertainty often arises from inaccurate forecast and market fluctuation.



www.manaraa.com

44

Govindan et al. (2017) pointed out that demand quantity, production and transportation costs are
the most frequently studied uncertainties in supply chain. Li and Hu (2017) studied lot-sizing and
scheduling problem under demand and workforce uncertainties. Ramaraj et al. (2017) considered
the same production problem with demand and yield uncertainties. The difference is that they
adopt stochastic programming approach for all uncertain parameters in the model. Alem et al.
(2018) formulated stochastic and robust models separately and compared the results with Monte
Carlo simulation. They provided guidelines for decision makers to assess a priori approach based on
their preferences. Keyvanshokooh et al. (2016) used hybrid approach in the context of a closed loop
supply chain problem where uncertain transportation cost was handled by stochastic programming
approach and robust optimization was adopted to deal with demand uncertainty. Similar hybrid
approach can be found in inventory control and bidding strategy (Liu et al., 2016; Minoux, 2018).
In this paper, we adopt the HSRO approach introduced by Keyvanshokooh et al. (2016) in the con-
text of lot-sizing and scheduling problems. To the best of authors’ knowledge, no existing papers
have studied the integration of demand and overtime processing cost uncertainties using HSRO
approach in the application of lot-sizing and scheduling.

The major contributions of this study are listed as follows:

• A lot-sizing and scheduling framework is proposed to study the integration of multiple uncer-
tainties. It provides the flexibility to satisfy only a fraction of customers according to market
competition and company’s policies.

• We adopt the HSRO approach of Keyvanshokooh et al. (2016) in a new context to study two
different types of uncertainties simultaneously including stochastic programming approach
for overtime processing cost uncertainty and robust optimization for demand uncertainty.

• SAA technique is applied to solve the stochastic program which considers overtime processing
cost uncertainty.

The remainder of this paper is organized as follows: In section 4.2, we review the basic concept
of robust optimization and present the proposed HSRO approach for lot-sizing and scheduling
formulation. section 4.3 describes the computational results such as scenario stability test and
sensitivity analyses on various parameters that provide managerial insights on the proposed model.
Finally, section 4.4 summarizes the paper and suggests future research directions.

4.2 Problem description

In this paper, we consider a multi-product, multi-period, and capacitated lot-sizing and schedul-
ing problem. Raw material are collected from up-stream factories and final products are shipped
to customers and down-stream factories. There are multiple steps in the manufacturing process,
such as welding, casting and molding. In this study, we assume that the products are perishable
and hence the excess amount of inventory in one period cannot be carried over the used to fulfill
demand in the future (Biller et al., 2005). There are several types of capacities such as maximum
available time on the machine, maximum production batch size in both regular time and overtime.
The goal is to design a robust production plan to maximize the profits given capacity constraints
under demand and overtime processing cost uncertainties.

In the HSRO formulation, we introduce the penalty cost for unmet demand and surplus cost
for excess production. On one extreme, if there is little market competition and company has
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significant market share, then losing small fraction of customers can be affordable. On the other
extreme, if the market is very competitive then losing any customers may be unacceptable. The
proposed hybrid model provides the flexibility to design an optimal plan under any circumstance
between these two extreme situations. Penalty cost for unmet demand would be low if market is
not competitive. On the other hand, penalty cost can be set to high values if customer satisfaction
is critical. Introducing the penalty and surplus costs in the production balance the customer
satisfaction and inventory resource requirement (Birge and Louveaux, 1997).

The objective of this study is to design a robust production plan under two different types of
uncertainties: One for overtime processing cost and the other for customer demand. We assume
that company has complete knowledge of the underlying probability distribution of the uncertain
overtime processing cost, so stochastic programming can be used to model this type of uncertainty.
On the other hand, predicting the probability density function of demand is very challenging due
to several reasons. Demand could be influenced by unpredicted situations such as a competitor
launches a new product or market fluctuation. Even if market is stable, predicting demand sce-
narios for new products is very difficult due to insufficient information, therefore, we adopt robust
optimization to model demand uncertainty.

4.2.1 Mathematical notations

All notations for the mathematical formulation are listed in Table 4.1.

4.2.2 Robust optimization

We follow Bertsimas and Thiele (2006) to formulate the robust optimization component. Con-
sider a linear programming problem where C ∈ Rn, b ∈ Rm and A is a m ∗ n matrix.

min Cx s.t. Ax ≤ b, x ≥ 0 (4.1)

Without loss of generality, uncertainty is assumed to affect only the elements in the matrix A.
We consider a particular row vector i of A and define Ji as the set of uncertain coefficients in that
row. To simplify the exposition, every coefficient aij , j ∈ Ji is subject to uncertainty and modeled
as independent random variable which belongs to a symmetric interval [âij−∆aij , âij+∆aij ] where
∆aij is the maximum deviation of the uncertain element aij and âij is the nominal value. This is
reflected in the following formulation of the robust counterpart of Equation 4.1.

min Cx s.t. max
∀aij∈Ji

(∑
j

aijxj

)
≤ bi ∀i, x ≥ 0 (4.2)

A scaled deviation parameter zij =
aij−âij

∆aij
is introduced. It should be noted that ∆aij , âij ,

aij represent the maximum deviation, nominal value, uncertain parameter for the random variable,
respectively. A budget parameter Γi is used to setup a boundary for aggregated scaled deviation.
This insight can be incorporated in mathematical terms as follows:∑

j∈Ji

|zij | ≤ Γi, ∀i (4.3)
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Table 4.1: Notations used in the HSRO formulation

Sets:

i 1, 2 · · · , N Set of raw material comes from up-stream suppliers

j 1, 2 · · · , N i and j are alias

t 1, 2 · · · , T Set of time periods in the production horizon

s 1, 2 · · · , S Set of scenarios for overtime processing cost

Parameters:

Di,t Stochastic demand for product i at time period t

Ds
i,t Uncertain demand for product i at time period t in scenario s

D̂s
i,t Nominal demand for product i at time period t in scenario s

∆Ds
i,t Maximum demand deviation from nominal value for product i at time period t in

scenario s

ηDs+
i,t Positive deviation percentage from nominal demand for product i at time period t

in scenario s

ηDs−
i,t Negative deviation percentage from nominal demand for product i at time period t

in scenario s

capt Overall time availability on the machine at time period t

ci Selling price for product i

pti Manufacturing time for product i

pri Regular time manufacturing cost for product i

poi Stochastic overtime manufacturing cost for product i

posi Overtime manufacturing cost for product i in scenario s

qi,t The maximum regular time batch size for product i at time period t

sci,j Overall preparation cost when a setup changeover from two different products i, j

is taken place

sti,j Overall preparation time when a setup changeover from two different products i, j

is taken place

α Ratio of regular and overtime production batch size

N Total amount of products that come from different families

probs The probability of scenario s

pen Penalty cost per unit of unmet demand

sur Surplus cost per unit of unnecessary production

ΓsD Overall demand deviation budget for scenario s

Decision Variables:

Xi,t Production batch size in the regular time for product i at time period t

Osi,t Production batch size in the overtime production for product i at time period t in

scenario s

Yi,j,t Binary variable which takes value 1 if setup changeover from two different products

i, j is taken place at time period t

Zi,t Binary variable which takes value 1 if setup for product i is carried over from time

period t− 1 to t

Vi,t Production sequence at time period t. It takes value from 1 to N
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Based on the description above, set Ji is defined as Ji = {aij
∣∣aij = âij + ∆aijzij ,∀i, j, z ∈ Ψ}

where Ψ = {z
∣∣|zij | ≤ 1,

∑
j∈Ji |zij | ≤ Γi, ∀i}. Reformulating each constraint i as

∑
j aijxj =∑

j(âij+∆aijzij)xj =
∑

j âijxj+
∑

j ∆aijzijxj , the bilevel robust Equation 4.2 can be transformed
into:

min Cx s.t.
∑
j∈Jj

âijxj + max
zi∈Ψi

∑
j∈Ji

∆aijzijxj ≤ bi ∀i, x ≥ 0 (4.4)

The lower level problem maxzi∈Ψi

∑
j∈Ji ∆aijzijxj for a given x∗ and constraint index i is

equivalent to Equation 4.5:

max
∑
j∈Ji

∆aijzijx
∗
j s.t.

∑
j∈Ji

zij ≤ Γi 0 ≤ zij ≤ 1 ∀j ∈ Ji (4.5)

By introducing the dual variables λi and µij , the dual of Equation 4.5 can be expressed as:

min Γiλi +
∑
j∈Ji

µij s.t. λi + µij ≥ ∆aijx
∗
j , µij , λi ≥ 0 ∀i, Ji (4.6)

By applying the dual Equation 4.6 to Equation 4.4, the robust counterpart of Equation 4.1 is
obtained:

min Cx

s.t.
∑
j∈Ji

âijxj − Γiλi −
∑
j∈Ji

µij ≤ bi ∀i

λi + µij ≥ ∆aijxj ∀i, j ∈ Ji
µij , λi ≥ 0 ∀i, j ∈ Ji

(4.7)

For a given solution x∗j , the probability of constraint violation can be calculated by (Bertsimas
and Sim, 2004):

Pr

(∑
j∈Ji

aijx
∗
j > bi

)
≤ 1− Φ

((
Γi − 1

)
/
√
|Ji|

)
(4.8)

Reversely, we can setup a maximum violation probability εi and Equation 4.9 gives us the
minimum budget Γi to maintain that particular level of violation probability.

Γi ≥ 1− Φ−1(1− εi)
√
|Ji| (4.9)

4.2.3 Hybrid stochastic and robust optimization model

To introduce our hybrid model, we first introduce a two-stage stochastic programming model
which serves as a baseline and the robust optimization is then built on top of the two-stage stochastic
programming model to construct the full hybrid model.
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4.2.3.1 Baseline model with uncertainty in overtime processing costs

In the two-stage stochastic programming model, demands are set to their nominal values while
uncertainties in the overtime processing costs are incorporated with the stochastic programming
approach. Sample Average Approximate approach was adopted to generate scenarios. In the lot-
sizing and scheduling process, first-stage decision variables identify the baseline production i,e.
raw material purchase and regular time production planning while second-stage decision variables
define possible recourse like overtime production and compensatory actions (Alfieri et al., 2012).
The first-stage decisions have to be made in the presence of uncertainties meaning the regular time
production decisions are made before we observe the realization of uncertain overtime processing
cost (Chaharsooghi et al., 2011). In the objective function, the goal is to maximize profit based
on revenue and production costs. Production costs include regular time production cost, overtime
production cost, and setup cost.

max ζ =
N∑
i=1

T∑
t=1

ci ∗Xi,t +
N∑
i=1

T∑
t=1

S∑
s=1

probs ∗Osi,t ∗ ci −
N∑
i=1

T∑
t=1

pri ∗Xi,t

−
N∑

i=1 i 6=j

N∑
j=1

T∑
t=1

sci,j ∗ Yi,j,t −
N∑
i=1

T∑
t=1

S∑
s=1

probs ∗ posi ∗Osi,t

(4.10)

Xi,t +Osi,t = D̂s
i,t ∀i, t, s (4.11)

Equation 4.11 ensure that overall production equals to the nominal demand. Regular time
production Xi,t is first-stage decision since it has to be determined before we realize the uncertainty.
Overtime production is scenario-based second stage decision since they are served as compensatory
actions. In addition, we assume that the products are perishable meaning excess inventory cannot
be carried over to satisfy future demand. Backlog is not allowed and hence unmet demand will be
lost. In the hybrid model, demands are random, which can vary in an predetermined interval with
mean D̂s

i,t and standard deviation ∆Ds
i,t. Therefore, the overall production can be either greater

than or less than the actual realization of demands. This will be discussed in detail in the hybrid
model section.

Xi,t ≤ qi,t ∗ (Zi,t +
N∑
j 6=i

Yj,i,t) ∀i, t (4.12)

Equation 4.12 ensures that regular production quantity Xi,t cannot exceed regular time produc-
tion batch size capacity qi,t. Since the setup of a particular product can take place at most once in

each time period meaning Zi,t +
∑N

j 6=i Yj,i,t ≤ 1. For example, if the setup of product i1 is carried

over from t1 to t2, then Zi1,t2 = 1. Furthermore, we know that
∑N

j 6=i1 Yj,i1,t2 = 0 based on the setup
assumption. On the other hand, for any product i2 6= i1, Zi2,t2 = 0 since the carried over setup in
time period t2 is not i2. It provides the opportunity to setup product i2 during this time period.
If product i2 is scheduled to be manufactured after product i1, then we know that Yi1,i2,t2 = 1.

N∑
i=1

pti ∗Xi,t +

N∑
i=1 i 6=j

N∑
j=1

sti,j ∗ Yi,j,t ≤ capt ∀t (4.13)
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Equation 4.13 states the overall regular time capacity. The left side represents the total pro-
duction time includes regular time processing time and setup changeover time. It is assumed that
setup is only required when products change from different families.

Osi,t ≤ α ∗Xi,t ∀i, t, s (4.14)

In Equation 4.14, overtime production quantity is bounded by the regular time production
quantities. Government policy states that the overtime production batch size must be limited
to 20% of the regular production batch size. Although overtime exceeds that threshold can be
considered under extreme circumstances, but it could lead to injury, fatigue and reduce efficiency
(Zhang et al., 2011).

N∑
i=1

Zi,t = 1 ∀t (4.15)

Xi,t = 0 ∀i, t = T (4.16)

Equation 4.15 indicates that only one setup can be carried over to the following time period.
Equation 4.16 states that no regular time production activity is allowed in the dummy period
(t = T ).

Zi,t +

N∑
j 6=i

Yj,i,t = Zi,t+1 +

N∑
j 6=i

Yi,j,t ∀i, t = 1 · · ·T − 1 (4.17)

Equation 4.17 indicates that setups have to happen in an equilibrium state. One of assumptions
is that setups are preservable meaning the last setup in one time period can be carried over to the
next period. For example, consider a situation where only products i1 are manufactured in time
period t1 and the setup carried over from t0 is i1, then Zi1,t1 = Zi1,t2 = 1, since the setup for
product i1 is carried over from t1 to t2. In addition, there is no setup changeover either from
other products to i1 or from i1 to any other products. Therefore,

∑N
j 6=i Yj,i,t =

∑N
j 6=i Yi,j,t = 0 and

equality condition is met. Consider a more complicated case where three different products are
manufactured in t1 in sequence of i1− i2− i3 and the setup carried over from previous time period
is i1. We know Zi1,t1 = Zi3,t2 = 1 since i3 is the last product on the production line in time period
t1. In addition, Yi1,i2,t1 = Yi2,i3,t1 = 1 since two setup changeovers take place in time period t1.
In conclusion, Setups carried over from previous time period and changeover from other products
represent flows going into a product node while setups carried over to the next time period and
changeover to other products represent flows leaving a product node.

Vj,t ≥ Vi,t + 1−N ∗ (1− Yi,j,t) ∀i, j 6= i, t (4.18)

One important assumption is that the setup for a particular product can take place at most
once in each time period. Equation 4.18 is a sub-tour elimination constraint. N is the number of
products and Vi,t is the production sequence of product i in time period t. We explain how this
type of constraints avoid sub-tour with an example in Figure 4.1. Assuming there are five different
products to be manufactured in time period t and production sequence is 1− 2− 3− 4− 5. Then
N = 5, V1,t = 1, V2,t = 2, V3,t = 3, V4,t = 4 and V5,t = 5. Let’s introduce an extra node 0,
and without loss of generality, we assume all feasible paths start from node 0 and end at node 0.
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Consider there is a sub-tour skipping node 0 and going directly from node 5 back to node 1, then
there is a sub-tour. This situation is represented by the dash line in the figure. Since this is a
5-step sub-tour, if we sum up all Yi,j,t = 1, we will have 5 ≤ 4 which is impossible. If all feasible
paths have to go through node 0, then there is no sub-tour in the graph. If product i is followed
by product j, then we know Yi,j,t = 1 and Vj,t = Vi,t + 1. Otherwise, we have Vj,t − Vi,t ≥ 1 −N .
Both inequalities are valid since, for decision variables V , the minimum value is 1 and maximum
value is N .

0

1

2 3 4

5

Figure 4.1: Sub-tour elimination example

4.2.3.2 Hybrid model with uncertainties in overtime processing costs and demand

In this paper, we adopt the HSRO approach proposed by Keyvanshokooh et al. (2016) in the lot-
sizing and scheduling problem setting. SAA technique is applied to stochastic overtime processing
cost. SAA is a Monte Carlo simulation based approach and scenarios are generated by taking
random IID samples from the given distribution (Kleywegt et al., 2002). Within each scenario, we
define polyhedral uncertainty sets for demand in each time period and for each product. The details
are shown in Figure 4.2. There are |S| different realizations of stochastic overtime processing cost.
Inside each scenario, we define a symmetric interval for robust demand. The nominal demand D̂s

i,t

and maximum deviation ∆Ds
i,t are predetermined. Uncertain demand Ds

i,t is allowed to deviate

from the D̂s
i,t toward the worst-case value within that interval. Note that strips in Figure 4.2 are

symmetric with respect to the nominal value, but the width of the strips do not need to be the
same for different time periods or products.

To develop the uncertainty sets for demand, we introduce the positive and negative deviation
percentages from their nominal demands as follows:

ηDs+

i,t =
Ds
i,t − D̂s

i,t

∆Ds
i,t

if Ds
i,t ≥ D̂s

i,t ηDs−
i,t =

D̂s
i,t −Ds

i,t

∆Ds
i,t

if Ds
i,t ≤ D̂s

i,t (4.19)
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Figure 4.2: Characterization of uncertain demand and overtime processing cost

Notice that at most one of ηDs+
i,t and ηDs−

i,t will be positive and the other one has to be zero in
Equation 4.19. The polyhedral uncertainty sets of demand for each scenario of overtime processing
costs can be represented by:

JSD =

{
Ds
i,t

∣∣∣∣Ds
i,t = D̂s

i,t + ∆Ds
i,t ∗ ηDs+

i,t −∆Ds
i,t ∗ ηDs−

i,t ∀i, t ∀ηDs+

i,t , ηD
s−
i,t ∈ KD

}
(4.20)

where

KD =

{
ηDs+

i,t , ηD
s−
i,t

∣∣∣∣0 ≤ ηDs+

i,t ≤ 1, 0 ≤ ηDs−
i,t ≤ 1,

∑
i,t

(ηDs+

i,t + ηDs−
i,t ) ≤ ΓsD

}
(4.21)

In particular, if a realization of demand is above the mean value D̂ij , then ηDs+
i,t is strictly pos-

itive and ηDs−
i,t equals to 0. Corresponding uncertainty sets of demand becomes JSD =

{
Ds
i,t

∣∣∣∣Ds
i,t =

D̂s
i,t + ∆Ds

i,t ∗ ηDs+
i,t

}
. Reversely, if a realization of demand is below the mean demand D̂ij , then

ηDs−
i,t is strictly positive and ηDs+

i,t equals to 0. Corresponding uncertainty sets of demand becomes

JSD =

{
Ds
i,t

∣∣∣∣Ds
i,t = D̂s

i,t−∆Ds
i,t ∗ ηDs−

i,t

}
. For a given overtime processing cost scenario, the dimen-

sion of those sets is |i| ∗ |t|, which means the budget for a given scenario (ΓsD) can take any value
between 0 to |i| ∗ |t|. If ΓsD equals to 0, then there is no protection against uncertain demand and
our hybrid model is identical to the two-stage model. If ΓsD equals to |i| ∗ |t|, then corresponding
constraint is fully protected.

In the HSRO formulation, demands belong to some predefined intervals and the exact values
are not known. If we include Equation 4.11 in the model formulation, then there is no guarantee
that these constraints will be satisfied because the exact realization of uncertain parameter is
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unknown before measuring the optimal regular and overtime production quantities. On the other
hand, solving the problem with Equation 4.11 will end up with two results: (1) optimal production
quantity is larger than the demand or (2) optimal production quantity is smaller than the demand.
In both cases, constraint Equation 4.11 is not satisfied and the decision making becomes infeasible.

In order to avoid this situation, we decide to move this constraint to the objective function
with new cost parameters. Penalty cost pen is introduced for one unit of unsatisfied demand and
surplus cost sur is introduced for one unit of excess production over demand. These two new cost
parameters provide the flexibility for the decision makers based on the market environment and
policy. For example, if the products have large market share and there is not much competition,
then the company can afford unmet demand and satisfy only proportion of orders. In this case, the
decision maker can decrease penalty cost and increase surplus cost. Conversely, if the company is
in a very competitive market and losing a customer incurs a high cost, then we should satisfy as
much demand as possible since losing customers become expensive. In this case, we can increase
penalty cost and decrease surplus cost. Our goal is to minimize the maximum amount of violation
cost due to unbalanced production flow in Equation 4.11. In the HSRO formulation, this set of
constraint is incorporated into the objective function with penalty cost pen and surplus cost sur.
For a given overtime processing cost scenario s, the violation cost can be formulated as follows:

V Cs(X,O) = max
Dsi,t∈JSD

{∑
i,t

(
Ds
i,t −Xi,t −Osi,t

)
∗ pen,

∑
i,t

(
Xi,t +Osi,t −Ds

i,t

)
∗ sur

}
(4.22)

where Ds
i,t is the random demand which belongs to the sets Equation 4.20 and 4.21. In Equa-

tion 4.22, Xi,t is the regular time production decision and Osi,t is the overtime production decisions.

The first term in the violation cost
∑

i,t

(
Ds
i,t−Xi,t−Osi,t

)
is unmet demand and the second term

in the violation cost
∑

i,t

(
Xi,t +Osi,t−Ds

i,t

)
is excess production over demand. For each overtime

processing cost scenario, Equation 4.22 is the worst-case result for violation cost and we want to
minimize this violation cost. By introducing an auxiliary variable Ws for each overtime process-
ing cost scenario, we transform the non-linear programming formulation to a linear programming
formulation:

min V Cs(X,O) = Ws

s.t.
∑
i,t

(
Ds
i,t −Xi,t −Osi,t

)
∗ pen ≤Ws, ∀Ds

i,t ∈ JSD

∑
i,t

(
Xi,t +Osi,t −Ds

i,t

)
∗ sur ≤Ws, ∀Ds

i,t ∈ JSD

Ws ≥ 0

(4.23)

For a given overtime processing cost scenario s, Equation 4.23 should always be feasible for any
realizations of uncertain demand within their polyhedral sets. Then we find robust counterparts
for each constraint in Equation 4.23:

max
Dsi,t∈JSD

{∑
i,t

(
Ds
i,t −Xi,t −Osi,t

)
∗ pen

}
≤Ws, (4.24)



www.manaraa.com

53

which can be rewritten as:

max
ηDs

+
i,t ,ηD

s−
i,t ∈Kd

{∑
i,t

(
∆Ds

i,t ∗ ηDs+

i,t −∆Ds
i,t ∗ ηDs−

i,t

)
∗ pen

}

+
∑
i,t

(
D̂s
i,t −Xi,t −Osi,t

)
∗ pen ≤Ws

(4.25)

We optimize Equation 4.25 over the positive (ηDs+
i,t ) and negative (ηDs−

i,t ) percentage of deviation
from the nominal value. Let’s focus on the first term in the Equation 4.25. It should be noted that
the differences between the first term in Equation 4.25 and Equation 4.26 are: (1) maximization
objective function has been changed to a minimization objective function; (2) we add a negative
sign in front of the coefficients in the objective function.

min
ηDs

+
i,t ,ηD

s−
i,t ∈Kd

{∑
i,t

(
−∆Ds

i,t ∗ ηDs+

i,t + ∆Ds
i,t ∗ ηDs−

i,t

)
∗ pen

}
s.t. 0 ≤ ηDs+

i,t ≤ 1

0 ≤ ηDs−
i,t ≤ 1∑

i,t

(
ηDs+

i,t + ηDs−
i,t

)
≤ ΓsD

(4.26)

Notice that the domains of ηDs+
i,t and ηDs−

i,t stay the same, therefore, the objective value of
Equation 4.26 equals to the negative objective value of the first term in Equation 4.25. We add
an additional negative sign in front of the minimization function in Equation 4.27 such that it
is equivalent to the first term in Equation 4.25. α1si,t, α2si,t and β1s are the dual variables for
constraints that have been transformed into the standard form in Equation 4.27.

− min
ηDs

+
i,t ,ηD

s−
i,t ∈Kd

{∑
i,t

(
−∆Ds

i,t ∗ ηDs+

i,t + ∆Ds
i,t ∗ ηDs−

i,t

)
∗ pen

}
s.t. − ηDs+

i,t ≥ −1 ∀i, t α1si,t

− ηDs−
i,t ≥ −1 ∀i, t α2si,t∑

i,t

(
− ηDs+

i,t − ηDs−
i,t

)
≥ −ΓsD β1s

ηDs+

i,t , ηD
s−
i,t ≥ 0

(4.27)

Then we take the dual of formulation Equation 4.27:

max
α1si,t,α2si,t,β1s

{
− ΓsD ∗ β1s −

∑
i,t

(
α1si,t + α2si,t

)}
s.t. − α1si,t − β1s ≤ −∆Ds

i,t ∀i, t
− α2si,t − β1s ≤ ∆Ds

i,t ∀i, t
α1si,t, α2si,t, β1s ≥ 0 ∀i, t

(4.28)
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In the linear programming Equation 4.28, all decision variables are non-negative and ∆Ds
i,t

is the maximum deviation from the nominal value which is also a positive constant. Therefore,
−α2si,t − β1s ≤ ∆Ds

i,t becomes redundant since it can be satisfied in any condition. Due to the
strong duality theory, we substitute the objective function of Equation 4.28 without α2si,t in the
Equation 4.25. The robust counterpart of first constraint in Equation 4.23 can be expressed as
follows: {∑

i,t

(
D̂s
i,t −Xi,t −Osi,t + α1si,t

)
+ ΓsD ∗ β1s

}
∗ pen ≤Ws

α1si,t + β1s ≥ ∆Ds
i,t ∀i, t

α1si,t, β1s ≥ 0 ∀i, t

(4.29)

Applying the same procedure to the second constraint in Equation 4.23, the other robust coun-
terpart is obtained as follows:{∑

i,t

(
Xi,t +Osi,t − D̂s

i,t + α2si,t

)
+ ΓsD ∗ β2s

}
∗ sur ≤Ws

α2si,t + β2s ≥ ∆Ds
i,t ∀i, t

α2si,t, β2s ≥ 0 ∀i, t

(4.30)

Finally, our HSRO formulation of the lot-sizing and scheduling design problem becomes:

max ζ =

N∑
i=1

T∑
t=1

ci ∗Xi,t +

N∑
i=1

T∑
t=1

S∑
s=1

probs ∗Osi,t ∗ ci −
N∑
i=1

T∑
t=1

pri ∗Xi,t

−
N∑

i=1 i 6=j

N∑
j=1

T∑
t=1

sci,j ∗ Yi,j,t −
N∑
i=1

T∑
t=1

S∑
s=1

probs ∗ posi ∗Osi,t

−
S∑
s=1

probs ∗Ws

(4.31)

subject to Equation 4.12 - 4.18, Equation 4.29 and Equation 4.30. For each overtime processing
cost scenario in the hybrid model, the budget parameter ΓsD balances the trade-off between the
level of robustness and the degree of conservativeness of the solution. As a consequence, larger ΓsD
provides more protection and increases the level of robustness while smaller ΓsD results in higher
probability of constraint violation. On the other hand, bigger ΓsD leads to lower expected profit
since model allows more deviations toward the worst-case in their uncertainty sets.

4.3 Case study

In order to demonstrate and validate the proposed hybrid model, we conduct a case study on
braking equipment production. A manufacturing plant receives two different types of raw material
from upstream and produces three different types of braking actuators P1, P2, and P3. These
products are directly supplied to customers and the goal is to identify the optimal production
strategy such that the total system cost is minimized.
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4.3.1 Date sources

This case study considers three different final products (N = 3). According to government
policy, ratio of overtime and regular time production batch sizes is set to 20% (α = 20%) meaning
overtime production batch size can not bigger than 20% of regular time production batch size
(Menezes et al., 2011). Setup changeovers are product-dependent and hence it is important to
identify the optimal production sequence. Setup changeovers times are included in Table 4.2 and
corresponding setup changeover costs are proportional to their setup changeover times (James and
Almada-Lobo, 2011). Notice that setup time between products in the same families is zero and
setup changeover matrix is not symmetric due to the fact that setups are product-dependent.

Table 4.2: Setup changeover times sti,j (mins)

P1 P2 P3

P1 0 270 90

P2 180 0 270

P3 90 180 0

Table 4.3 provides the nominal demand, processing time, and regular time processing cost.
Nominal demands do not change over the planning horizon and the maximum demand deviations
can vary from 5% to 30% of their nominal values. Overtime processing cost follows a normal
distribution with mean equals to 1.5 times regular time processing cost and standard deviation
equals to 10% of mean value(Rego and Mesquita, 2015). Unit selling price, penalty cost, and
surplus cost are proportional to regular time processing cost and more details on overall time
capacity capt and maximum regular time batch size qi,t can be found in the Hu and Hu (2016).

Table 4.3: Parameters setup for D̂s
i,t, pti, and pri

P1 P2 P3

Nominal demand D̂s
i,t (unit) 467.25 33.82 149.7

Processing time pti (mins/unit) 6 6.6 7.2

Regular time processing cost pri ($/unit) 254.08 254.08 254.08

4.3.2 Computational results

In this section, we first present scenario stability test to validate that the scenario sample size
is sufficient to generate stable objective function. The results are illustrated in Figure 4.3. Five
different scenario sample sizes with 20 replications were analyzed. The key idea is that when several
scenario samples with the same sample size are generated, the optimal value of objective function
should be close if scenario sample size is sufficient enough to represent the distribution. Concretely,
we generate 20 different scenario trees ηi ∀i = 1, · · · , 20 and sample sizes are identical across all
scenario trees. Suppose we solve the model with each scenario trees generated, the optimal solutions
are x∗i ∀i = 1, · · · , 20 and optimal objective values are f(x∗i , ηi) ∀i = 1, · · · , 20. Stability indicates
that f(x∗i , ηi) ≈ f(x∗j , ηj) ∀i, j ∈ {1, · · · , 20} and i 6= j. If this type of stability is obtained, then the
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performance of optimal solution x∗ and f(x∗, η) are independent of which scenario tree gets selected
Kaut et al. (2007). Scenario sample sizes = 20, 50, 80, 100, 150 have been tested and illustrated in
Figure 4.3. Intuitively, when the scenario sample size is small, not enough information was collected
to generate stable objective values. As scenario sample size increases, more information about the
distribution becomes available and objective values become more stable. It can be observed from
the figure that when scenario sample size is 20, the optimal objective values are highly variable and
hence not stable. When scenario sample size is 150, the minimum objective value is 1,940,176 while
the maximum value is 1,945,427. The lack of significant difference between different trials shows
sample stability. The model statistics as a function of number of scenarios are shown in Table 4.4.
The computational times are less than 1 minute and the size of problem increases linearly as a
function of number of scenarios. From the CPU times, we can see that the number of scenarios
does not increase the computational complexity dramatically. In order to investigate the factors
that drive the major complexity of the model, the number of time periods and the number of
products have been analyzed. The computational time increases linearly as a function of number
of time periods. However, if we increase the number of products, the computational time increases
much faster than other factors.
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Figure 4.3: Scenario stability test

The solid line in Figure 4.3 represents the objective value of the deterministic model in which
demand and overtime processing cost are fixed and known. It should be noted that roughly half of
the objective values of the stochastic models are above that red line when the rest are below. The
main reason is that we consider overtime processing cost uncertainty in the two-stage stochastic
programming model and demands are assumed to be fixed at their nominal values. Therefore,
uncertainty only affects the objective function of the two-stage stochastic programming model and
feasible region stays the same. Concretely, if the scenarios have overtime processing cost higher than
the nominal values, then the two-stage stochastic programming model will have higher objective
value than the deterministic model. Reversely, if the scenarios have lower overtime processing
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Table 4.4: Model statistics

Number of scenarios Number of equations Number of variables

20 1399 1426

50 3349 3406

80 5299 5386

100 6599 6706

150 9849 10006

cost than the nominal values, then the two-stage stochastic programming model will have lower
objective value than the deterministic model. From the 20 random samples in Figure 4.3, roughly
half of the objective values of the two-stage stochastic programming model are higher than the
objective value of the deterministic model.

The comparison between the deterministic model, two-stage stochastic programming model and
hybrid model is shown in Figure 4.4. The solid line represents the objective value of the deterministic
model. When the budget ΓsD = 0, the objective value of the hybrid model equals to the objective
value of the two-stage stochastic model since no demand uncertainty is allowed. Concretely, the top
left point represents the objective value of the two-stage stochastic programming model. However,
when we increases the budget, the objective value of the hybrid model decreases dramatically as
shown in Figure 4.4. The key take-away are: First, the objective value of the deterministic model
can be either higher or lower than the objective value of the two-stage stochastic programming model
depending on the overtime production cost scenarios. Second, as budget increases, the objective
value of the hybrid model will be significantly lower than the objective value of the deterministic
model which concludes that considering uncertainties are really important.

We first perform the sensitivity analysis on parameters related to budget and quantity. The
effect of budget uncertainty is studied by varying ΓsD for uncertain demands. Let’s define ρ as the
maximum variability of the uncertain demands. Higher ρ results in larger deviation. Note that
budget can take any values between 0 to |N | ∗ |T | = 18. If the budget happens to be integer,
then it is the maximum amount of parameters that can deviate from their mean values. ΓsD = 0
indicates that there is no protection against uncertainty and ΓsD = 18 provides fully protection
at expense of getting conservative solutions. For a particular trajectory in Figure 4.4, we fix ρ
and vary ΓsD. As budget increases, we allow more variability in the uncertain demand and hence
optimal profit becomes lower. One special case is ΓsD = 0, four different ρ values provide the same
optimal solution since no deviation is allowed and the level of variability no longer matters. If we
fix budget and only focus on the ρ, it is obviously that smaller ρ results in higher optimal objective
value. That is, the worst-case value for small ρ is actually better than the one for large ρ since the
maximum deviation is smaller. The trajectories in Figure 4.4 appear piecewise linear because only
integer budgets are calculated.

Details about relationships between probability of constraint violation and budget are included
in the Figure 4.5. In Figure 4.5a, we show the probability of violation ε with respect to ΓsD.
As budget increases, there are more protections toward constraint and the probability of violation
decreases. When budget reaches the maximum value |N |∗|T |, the constraint is completely protected
and the probability of violation reduces to 0. Reversely, we can measure the minimum ΓsD with
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Figure 4.4: Optimal objective value with respect to different ΓsD and ρ

respect to ε by taking the inverse function. It is shown in Figure 4.5b, If the maximum violation
probability is set to 0.17, then the minimum budget in order to maintain that violation probability
is around 5.

In the Figure 4.6, we investigate how capacity of regular time production batch size (q) and
ratio of regular vs overtime production (α) affect the optimal objective value. Clearly, bigger q
value means more regular time production resource. In addition, overtime production quantity is
bounded by the regular time production batch size and hence bigger q indicates more overtime
production resource as well. It is shown in Figure 4.6 that if extra money can be invested, then
production batch size q is certainly much more promising than overtime production α. When we fix
q and only focus on the α, bigger α provides more overtime production resource and hence results
in higher profit. When we fix α and vary q, it does not only provide more overtime production
resource but also regular time production resource. It is why there is big improvement in the
optimal profit when we vary q.

Next, we conduct the sensitivity analyses on parameters that associate with time resources such
as total time availability capt, processing time pti and setup changeover time sti,j . In Table 4.5, the
sensitivity analysis for overall time capacity has been illustrated on the machine as well as utilization
of time resources. Ui represents the time utilization of time period i. As we increases overall time
availability, there is more regular time production resources and hence optimal profit increases.
Note that there is no improvement when capt changes from 0.9 to 1 indicating we simply waste
10% of time resource. In addition, we observe that, as we reduce capt, U5 and U6 first approach 1
followed by U2, U3, then U1 and U4. It provides insights on how to invest time resources. Clearly,
time period 5 and 6 have the highest priority since their utilizations approach to 1 first. Then time
period 2, 3 followed by 1 and 4 should be invested if there is enough budget.
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Figure 4.5: Relationship between ΓsD and ε

Table 4.5: Optimal profit and time utilization (Ut) for different overall time capacities (capt)

Factor (capt) Optimal profit U1 U2 U3 U4 U5 U6

0.7 1906807 0.93 1 0.951 0.93 1 1

0.8 1931663 0.814 0.944 0.814 0.814 1 1

0.9 1941988 0.724 0.839 0.724 0.74 0.999 0.999

1 1941988 0.651 0.755 0.651 0.666 0.9 0.9

Ut: Utilization of overall time capacity in period t, t = 1, · · · , 6

Processing time pti and setup changeover time sti,j also play important roles in the decision
making process. Different pti and sti,j are tested in Figure 4.7. Since overall time availability is
fixed, both pti and sti,j can affect regular time production plan. From Equation 4.8, we can see that
increasing pti or sti,j reduces regular time production capacity. That is, when we increase factor,
optimal profit decreases. Note that there is a point where optimal profit becomes negative meaning
current production resources are not able to make profit due to large penalty cost. In addition,
we can see that optimal profit is more sensitive to the processing time than setup cost. The main
reason is that we assume setup takes place between products from different families. Intuitively,
when we produce only one type of product, there is no setup changeover cost but processing cost
always exists as long as there is production activity.

Finally, we study the sensitivity for parameters that associate with budget such as regular time
processing cost, selling price, penalty and surplus cost. Selling price is originally 3 times more
expensive than the regular production cost. That is, when factor is set to 5, pri becomes higher
than the profit and optimal profit becomes negative. Smaller pri provides larger revenue and thus
profits. Conversely, if we decrease ci, profit becomes smaller. When factor is set to 0.3 meaning
ci < pri, optimal profit becomes negative. Since uncertain demand can vary in a predetermined
interval where the nominal value and maximum deviation are specified. From Table 4.6, we can see
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Figure 4.6: Optimal objective value with respect to different q and α

that production decisions becomes riskier since extra costs for unmet demand and excess amount
of production increase as penalty and surplus costs increase. It should be noted that the matrix
in Table 4.6 is symmetric with respect to the main diagonal since uncertain demand vary in a
symmetric interval and hence the penalty and surplus costs have identical influence on the optimal
profit.

Table 4.6: Optimal objective value as a function of penalty (pen) and surplus (sur) costs

Surplus cost (sur)

0.5 1 1.5 2

Penalty cost (pen)

0.5 1496793 1354316 1283077 1240344

1 1354316 1051597 877072 760721

1.5 1283077 877072 606401 418141

2 1240334 760721 418141 161205

4.4 Conclusion

In this paper, we study a multi-product, multi-period and capacitated lot-sizing and scheduling
problem under demand and overtime production cost uncertainties. We adopt the HSRO approach
of Keyvanshokooh et al. (2016) to maximize overall profit under demand and overtime processing
cost uncertainties. We assume that overtime processing cost is predictable and hence historical
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Figure 4.7: Optimal profit for different processing times (pti) and setup times (sti,j)

data can be used to generate scenarios. Inside each overtime processing cost, polyhedral sets are
introduced for uncertain demands due to their unpredictable characteristic. In the case study,
braking production from an automotive company is used to illustrate and validate the proposed
model and solution. Scenario stability tests have been conducted to identify proper scenario size.
As scenario size increases, the objective value becomes more stable since scenarios have better
representation of original distribution. When scenario sample size is 150, the relative difference
between the maximum and minimum objective value is less than 0.3%. Then we carry out sensitivity
analyses for parameters like budget ΓsD, constraint violation probability ε and time availability on
the machine capt etc. Budget provides the level of robustness at the expense of profit. Higher
ΓsD results in better protection against uncertainty, but the corresponding profit becomes lower.
Constraint violation probability ε can be setup by decision makers as the maximum violation
probability of constraints or calculated for given ΓsD. Concretely, ε can be written as a strictly
decreasing function with respect to ΓsD. Time availability and utilization are also conducted to
provide valuable insights. It can be shown that there are at least 10% waste of time resources. In
addition, time periods 5 and 6 are bottleneck that can be improved upon if there is an increase in
the production load. Impacts of other parameters like setup time, processing cost and selling price
have also been studied in the paper.

In conclusion, we introduce a framework to investigate multiple source of uncertainties of varying
characteristics in the scope of lot-sizing and scheduling production. Future research can be explored
in the following directions. First, we assume that a particular setup can be taken place at most
once in each time period while in reality, multiple setup times maybe allowed. It increases the
complexity of a problem exponentially and hence heuristics can be considered. Second, a lot-
sizing and scheduling problem is currently at least as difficult as solving one traveling salesman
problem in each time period. Some valid inequalities can be applied for computational performance
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Figure 4.8: Optimal profit for different regular processing costs (pri) and selling prices (ci)

comparisons when number of products increases. Last, demand is assumed to be independent from
previous observations and this may not be true in other context where there are strong seasonalities
and trends.
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CHAPTER 5. A FUZZY MULTI-OBJECTIVE FACILITY LOCATION
MODEL FOR CLOSED-LOOP SUPPLY CHAIN NETWORK DESIGN

UNDER UNCERTAINTIES

The importance of considering forward and backward flows simultaneously in supply chain
networks spurs an interest to develop closed-loop supply chain networks (CLSCN). Due to the
expanded scope in the supply chain, designing CLSCN often faces significant uncertainties. This
paper proposes a fuzzy multi-objective mixed integer linear programming model to deal with un-
certain parameters in CLSCN. The two objective functions are minimization of overall system costs
and minimization of negative environmental impact. Negative environmental impacts are measured
and quantified through CO2 equivalent emission. Uncertainties include demand, return, scrap rate,
manufacturing cost and negative environmental factors. The original formulation with uncertain
parameters is firstly converted into a crisp model and then an aggregation function is applied to
combine the objective functions. Numerical experiments have been carried out to demonstrate
the effectiveness of proposed model formulation and solution approach. Sensitivity analyses on
degree of feasibility, the weighing of objective functions and coefficient of compensation have been
conducted.

5.1 Introduction

The increasing need for remanufacturing, the growing market competition, and the concern on
negative environmental impacts have spurred significant interest in closed-loop supply chain network
(CLSCN) adoption in manufacturing industry. In contrast to designing the forward and reverse
material flows separately, the integrated system can achieve global optimality considering both
flows in the supply chain. As pointed out by Klibi et al. (2010), the complex and dynamic nature
of CLSCN creates a lot of uncertainties in the supply chain system and dramatically influences the
overall performance of the logistics. The design of a supply chain network often involves long-term
strategic decisions which have sustaining impact in business operations. Pishvaee et al. (2011) stated
that opening/closing or upgrading a facility are capital intensive and time-consuming, and hence
making any changes to those decisions in real time is often impossible. Therefore, it is essential
to incorporate uncertainties into the design of CLSCN such that the decisions in the supply chain
network configuration are efficient and robust.

Scenario-based stochastic programming, robust optimization, and fuzzy programming approaches
have been widely applied in CLSCN to deal with uncertainties. Scenario-based stochastic program-
ming is a powerful approach when probabilistic distribution information for the uncertain parameter
is available. However, this approach has limitations (Bertsimas and Thiele, 2006; Gülpınar et al.,
2013). First, in many real-world applications the decision maker may not have enough historical
data, thus, estimating the accurate probabilistic distribution is impossible. For instance, estimat-
ing probabilistic distribution of demand of new product can be challenging. Second, an accurate
approximation of probabilistic distribution may require a large amount of scenarios which increase
the computational complexity. On the other hand, if scenario sample size is restricted for compu-
tational reasons, then the range of future realizations under which decisions are determined and
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evaluated is limited. To address these limitations, robust optimization has been introduced as an
alternative approach to deal with uncertainty. Robust optimization handles uncertainties by solv-
ing robust counterpart over predetermined uncertainty sets. The robust counterpart is a worst-case
formulation of the original problem in which worst-case is measured over all possible values that
uncertain parameters may take in given convex sets. The main advantage of robust optimization in
contrast to scenario-based stochastic programming is that only rough historical data is required to
derive the uncertainty sets (Alem and Morabito, 2012). However, the main limitations are: First,
only a few uncertain parameters were considered in robust optimization for CLSCN mainly due
to reformulation as well as computational complexity(Hasani et al., 2012; Mirzapour Al-E-Hashem
et al., 2011; Pishvaee et al., 2011). As stated by Prajogo and Olhager (2012), supply chain network
design often involves decisions from multiple stakeholders and significant amount of uncertainties.
Second, robust optimization assumes all uncertain coefficients belong to a predefined symmetric in-
terval centered at the nominal value. This may not be true for some real-world applications in which
uncertainties have highly skewed distributions. Third, robust optimization assumes uncertainty to
affect only the constraint coefficients. It should be noted that a problem with uncertainties in the
objective functions or right hand side of constraints requires reformulation and thus increase com-
putational complexity. As an alternative, the main advantages of fuzzy programming are: First,
this approach provides a framework to handle multiple uncertainties at the same time without
increasing model complexity. Those uncertainties can affect not only left hand side of constraints
but also right hand side of constraints as well as objective function. Second, this approach does not
require complete information about uncertainty. Uncertainties in the fuzzy programming are dealt
with triangular or trapezoidal membership function in which only rough data is required to deter-
mine the most pessimistic value, the most possible value and the most optimistic value. However, if
the exact information of uncertainty is available, then the scenario-based stochastic programming is
preferred. Third, this method provides degree of flexibility in constraints and degree of satisfaction
level in the objective function, simultaneously (Dubois et al., 2003).

The idea of CLSCN was first proposed by Fleischmann et al. (2001) who found out the model
with integration of forward and reverse flows could provide significant cost saving in contrast to
separated decision making models. They presented a deterministic CLSCN model and discussed
differences with traditional logistics setting. Similar deterministic CLSCN studies can be found
in the following literatures(Ko and Evans, 2007; Lu and Bostel, 2007; Üster et al., 2007). Of the
few recent studies that consider uncertainties in the CLSCN problem, most of them estimate the
probabilistic distributions for the uncertain parameters and then apply scenario-based stochastic
programming which samples scenarios from the probabilistic distributions followed by scenario
reduction techniques (Lee and Dong, 2008; Listeş, 2007; Salema et al., 2007). Scenario-based
stochastic programming is a powerful tool if there is enough historical data to fit an accurate
probabilistic distribution for the random variables. However, data may not be sufficient to identify
the underlying distribution in some real world applications. Robust optimization is an alternative
approach to cope with uncertainties with rough historical data and related studies can be found in
the following literatures (Hasani et al., 2012; Pishvaee et al., 2011). On top of that, there are papers
that apply multiple methods, simultaneously. Keyvanshokooh et al. (2016) proposed a hybrid robust
and stochastic programming approach for CLSCN in which demand, return and cost uncertainties
have been studied. Vahdani et al. (2012) presented a bi-objective mathematical model for CLSCN
with cost uncertainty. In order to solve the problem, they introduced a novel solution methodology
by combining queuing theory, robust optimization and fuzzy multi-objective programming. To
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the best of authors’ knowledge, these papers studied at most three types of uncertainties, namely
demand, return and cost. However, CLSCN is a long-term planning problem and hence there
are a large number of uncertainties in the decision making process. Fuzzy programming is an
appropriate approach for problems with multiple uncertainties since: (1) the complexity of problem
is independent of the number of uncertainties and (2) this method does not increase the number
of objective functions or constraints. Pishvaee and Torabi (2010) introduced a fuzzy mathematical
programming model for CLSCN with two objective functions: minimization of total costs and
minimization of total delivery tardiness. Zarandi et al. (2011) considered uncertainties in the
decision maker’s aspiration levels as the objectives are imprecise. There are four different objective
functions in the paper: first two objective functions aim to minimize the overall costs and the last
two objective functions focus on the maximization of total service level. Jindal and Sangwan (2014)
introduced a fuzzy mixed integer linear programming model for CLSCN with a single objective
function which maximizes the overall profit. Kumar and Kumar (2013) compared a traditional
supply chain network system with a closed-loop supply chain network system and made the following
claim: The traditional supply chain seeks to reduce the cost and improve the efficiency while
CLSCN aims to lower the consumption of resources and decrease the emissions of pollutants so
as to maximize the economic benefits. Amin and Zhang (2013) emphasized the importance of
considering environmental impact in CLSCN because environmental protection is included in the
both internal and external management.

In this paper, we propose a mathematical model for a single-product, multi-period and capaci-
tated CLSCN. The tactical decisions include determining flows among the facilities while strategic
decisions involve facility location selection. The major contributions can be summarized as follows:

• A novel multi-objective CLSCN model is proposed. The goal is to minimize the overall system
costs and negative environmental impact which is measured and quantified by CO2 equivalent
emission.

• Fuzzy programming is applied to convert original formulation with uncertain parameters into
a crisp model. After that, an aggregation function is applied to integrate and evaluate the
two different objective functions.

The remainder of this paper is organized as follows: The problem statement and model for-
mulation are defined in section 5.2. The equivalent crisp model as well as solution approach are
presented in section 5.3. The computational experiments and sensitivity analyses are included in
section 5.4, and managerial insights are derived. Finally, section 5.5 concludes the paper with major
findings and points out future research directions.

5.2 Problem definition and formulation

5.2.1 Problem statement

As shown in Figure 5.1, the network design problem studied in this paper is a single product,
multi-period and capacitated CLSCN including manufacturing plants, distribution, collection, re-
covery and disposal centers. Given the customer demands, the goal is to find the optimal facility
locations as well as materials flows such that overall system costs and negative environmental im-
pacts are minimized. The negative environmental impacts are measured and quantified by CO2
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equivalent emission. We assume that facilities with higher capital investments have environmental
friendly machines and clean technology, therefore, negative environmental impacts are inversely
proportional to capital investment. This supply chain system consists of both forward and back-
ward flows. In the forward network, manufacturing plants produce and transport products to
distribution centers and then to customers. In the backward network, defective/used products are
collected from customers and shipped to collection centers. After a quality examination process,
returned products are classified into two different categories depending on their conditions. The
recoverable and scrapped items are sent to recovery and disposal centers, respectively. After ap-
propriate processing, recovered items are sent back to distribution centers and reenter the forward
network.

Manufacturing Plants
(I)

Distribution Centers
(J)

Customers
(K)

Collection Centers
(L)

Recovery Centers
(M)

Disposal Centers
(N)

Figure 5.1: Closed-loop supply chain configuration

In this paper, we assume that products are fairly new to the market and therefore not enough
historical data are available to estimate the distributions of demand, return, and processing cost
etc. On the other hand, network infrastructure information such as fixed cost, maximum capacity
and transportation cost are assumed to be known. Because there are multiple uncertain parameters
with limited amount of historical data, we decide to use fuzzy programming for its modeling and
computational efficiency (Liang, 2006).

5.2.2 Model formulation

The following mathematical notations have been used in the formulation of the CLSCN. Pa-
rameters with uncertainty are represented with a tilde sign on. Demand volume, return volume,
average scrap rate and unit processing cost at different facilities are considered to be uncertain.
In addition, we consider uncertainties in negative environmental impact through CO2 equivalent
emission. Parameters like facility fixed cost, facility maximum capacity, and transportation cost
are considered to be known and fixed.

Sets:
i set of potential locations for manufacturing plants i = 1 · · · I



www.manaraa.com

67

j set of potential locations for distribution centers j = 1 · · · J
k set of fixed locations of customers k = 1 · · ·K
l set of potential locations for collection centers l = 1 · · ·L
m set of potential locations for recovery centers m = 1 · · ·M
n set of potential locations for disposal centers n = 1 · · ·N
t set of time periods t = 1 · · ·T
Parameters:
d̃kt: demand volume of customer k in time period t
ω̃kt: percentage of return (probability of items being returned) from customer k in time period

t
η̃t: mean scrap rate in time period t
αi: fixed cost of building manufacturing plant i
fj : fixed cost of building distribution center j
gl: fixed cost of building collection center l
an: fixed cost of building disposal center n
bm: fixed cost of building recovery center m
coij : unit product shipping cost from manufacturing plant i to distribution center j
cujk: unit product shipping cost from distribution center j to customer k
cqkl: unit product shipping cost from customer k to collection center l
cplm: unit product shipping cost from collection center l to recovery center m
csln: unit product shipping cost from collection center l to disposal center n
chmj : unit product shipping cost from recovery center m to distribution center j
ρ̃i: unit production cost at manufacturing plant i
ϕ̃j : unit processing cost at distribution center j
β̃l: unit processing cost at collection center l
τ̃m: unit reproduction cost at recovery center m
pri: maximum capacity of manufacturing plant i in each time period
pxj : maximum capacity of distribution center j in each time period
pyl: maximum capacity of collection center l in each time period
pzm: maximum capacity of recovery center m in each time period
pwn: maximum capacity of disposal center n in each time period
ẽri: negative environmental impact factor for opening a manufacturing plant at location i
˜exj : negative environmental impact factor for opening a distribution center at location j
ẽyl: negative environmental impact factor for opening a collection center at location l

˜ezm: negative environmental impact factor for opening a recovery center at location m
˜ewn: negative environmental impact factor for opening a disposal center at location n

Decision variables:
Oijt: volume of products transported from manufacturing plant i to distribution center j in

time period t
Ujkt: volume of products transported from distribution center j to customer k in time period t
Qklt: volume of returned items transported from customer k to collection center l in time period

t
Plmt: volume of recoverable items transported from collection center l to recovery center m in

time period t
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Slnt: volume of scrapped items transported from collection center l to disposal center n in time
period t

Hmjt: volume of recovered items transported from recovery center m to distribution center j in
time period t

Ri: 1 if a manufacturing plant is built at location i and 0 otherwise
Xj : 1 if a distribution center is built at location j and 0 otherwise
Yl: 1 if a collection center is built at location l and 0 otherwise
Zm: 1 if a recovery center is built at location m and 0 otherwise
Wn: 1 if a disposal center is built at location n and 0 otherwise
With these defined notations, the CLSCN problem can be constructed as follows:

5.2.2.1 Objective functions

min ζ1 =
∑
i

αi ·Ri +
∑
j

fj ·Xj +
∑
l

gl · Yl +
∑
n

an ·Wn +
∑
m

bm · Zm

+
∑
i,j,t

(ρ̃i + coij) ·Oijt +
∑
j,k,t

(ϕ̃j + cujk) · Ujkt +
∑
k,l,t

cqkl ·Qklt

+
∑
l,m,t

(β̃l + cplm) · Plmt +
∑
l,n,t

(β̃l + csln) · Slnt

+
∑
m,j,t

(τ̃m + chmj) ·Hmjt

(5.1)

min ζ2 =
∑
i

ẽri ·Ri +
∑
j

˜exj ·Xj +
∑
l

ẽyl · Yl +
∑
m

˜ezm · Zm +
∑
n

˜ewn ·Wn (5.2)

The strategic decisions in this CLSCN design include the numbers as well as locations of manu-
facturing plants, distribution, collection, recovery and disposal centers. In addition, decisions need
to be made on the flow volume between facilities in each time period. Two objective functions are:
minimization of overall system costs and minimization of negative environmental impact. Overall
system costs include fixed costs, transportation costs and manufacturing costs. We use CO2 equiv-
alent emission to measure and quantify negative environmental impact. The inverse relationship
between capital investment costs (αi, fj , gl, an, bm) and CO2 equivalent emission is embedded
in the negative environmental impact factors (ẽri, ˜exj , ẽyl, ˜ezm, ˜ewn). Notably, Equation 5.1
and 5.2 are in conflict with each other. That is, higher value in one objective function results in
lower value in another one and hence optimizing the CLSCN requires a trade-off between these two
contradictory objective functions.

5.2.2.2 Constraints

∑
j

Ujkt ≥ d̃kt ∀k, t (5.3)

∑
l

Qklt ≥ ω̃kt · d̃kt−1 ∀k, t (5.4)
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∑
i

Oijt +
∑
m

Hmjt =
∑
k

Ujkt ∀j, t (5.5)

η̃t ·
∑
k

Qklt =
∑
n

Slnt ∀l, t (5.6)

(1− η̃t) ·
∑
k

Qklt =
∑
m

Plmt ∀l, t (5.7)

∑
j

Hmjt =
∑
l

Plmt ∀m, t (5.8)

∑
j

Oijt ≤ Ri · pri ∀i, t (5.9)

∑
i

Oijt +
∑
m

Hmjt ≤ Xj · pxj ∀j, t (5.10)

∑
k

Qklt ≤ Yl · pyl ∀l, t (5.11)

∑
l

Plmt ≤ Zm · pzm ∀m, t (5.12)

∑
l

Slnt ≤Wn · pwn ∀n, t (5.13)

Ri, Xj , Yl, Zm,Wn ∈ {0, 1} ∀i, j, l,m, n (5.14)

Oijt, Ujkt, Qklt, Plmt, Slnt, Hmjt ≥ 0 ∀i, j, k, l,m, n, t (5.15)

We assume that all demands must be satisfied and no backlog is allowed. Equation 5.3 ensures
the demands are satisfied. Equation 5.4 makes sure return products are collected and shipped to
the collection centers. Equation 5.5 - 5.8 are flow balance equations which assure flow balance at
distribution, collection and recovery centers. Equation 5.9 - 5.13 are maximum capacity constraints
which enforce, in each time period, the difference between incoming and outgoing flows for each fa-
cility is no larger than the maximum capacity. Equation 5.14 indicates all facility location variables
have to be binary and Equation 5.15 indicates all flow variables have to be non-negative.

5.3 The proposed solution method

The proposed CLSCN design formulation is a mixed integer linear programming problem with
multi-objective functions. Since membership functions are used to capture the uncertainties, we
transform the original model into an equivalent crisp model in the first stage. In the second stage,
we combine two objective functions and solve the crisp model to obtain solutions.
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5.3.1 The equivalent auxiliary crisp model

Multiple approaches have been proposed in the literature to handle formulation with uncertain
parameters in both constraints and objective functions (Inuiguchi and Ramık, 2000; Jiménez et al.,
2007; Wang and Liang, 2005). In this paper, we adopt Jiménez et al. (2007) approach. The major
advantage of their method is that it does not introduce extra objective functions or constraints and
the whole problem remains linear. This approach is based on the concept of expected interval and
expected value of a fuzzy parameters.

Assume c̃ is a triangular fuzzy number whose membership function µc̃ can be represented by
the following equation:

µc̃(x) =


fc(x) = x−cp

cm−cp if cp ≤ x ≤ cm

1 if x = cm

gc(x) = co−x
co−cm if cm ≤ x ≤ co

0 if x ≤ cp or x ≥ co

(5.16)

where cp, cm and co indicate the most pessimistic value, the most possible value and the most
optimistic value. These membership functions can be stated as the degree of occurrence of param-
eters which are usually determined based on historical data and experts’ knowledge. According
to Jiménez et al. (2007), the expected value (EV) and expected interval (EI) of a triangular fuzzy
number c̃ can be defined as follow:

EV (c̃) =
Ec1 + Ec2

2
=
cp + 2cm + co

4
(5.17)

EI(c̃) = [Ec1, E
c
2] = [

∫ 1

0
f−1
c (x)dx,

∫ 1

0
g−1
c (x)dx] = [

1

2
(cp + cm),

1

2
(cm + co)] (5.18)

Two problems need to be addressed when the formulation contain uncertain parameters: (1)
How to define a feasible solution when the constraints have fuzzy parameters; (2) How to define
an optimal solution when the objective functions have fuzzy coefficients. Multiple approaches for
ranking fuzzy numbers can be found in the following literatures (Rommelfanger and S lowiński,
1998; Sakawa, 2013). Different properties have been studied to justify ranking approaches such as
robustness and distinguishability.

According to Jiménez et al. (2007), any pair of fuzzy number ã and b̃, the degree in which ã is
larger than b̃ can be stated as follows:

µM (ã, b̃) =


0 if Ea2 − Eb1 < 0

Ea2−Eb1
Ea2−Eb1−(Ea1−Eb2)

if 0 ∈ [Ea1 − Eb2, Ea2 − Eb1]

1 if Ea1 − Eb2 > 0

(5.19)

where [Ea1 , E
a
2 ] and [Eb1, E

b
2] are the expected interval of fuzzy parameters ã and b̃. Expression

µM (ã, b̃) ≥ α or ã ≥α b̃ can be viewed as fuzzy parameter ã is no smaller than b̃ in degree α.
Similar ranking approaches can be found in the following literatures (Fortemps and Roubens, 1996;
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González, 1990). According to Parra et al. (2005), for any pair of fuzzy parameters ã and b̃, we say
that these two fuzzy parameters are equivalent in degree of α if Equation 5.20 holds.

ã ≥α
2
b̃ and ã ≤α

2
b̃ (5.20)

ã ≤α
2
b̃ indicates that b̃ is larger than or equal to ã at least in degree α

2 . Equivalently, it also

indicates that ã is larger than or equal to b̃ at most in degree 1− α
2 . Therefore, Equation 5.20 can

be reformulated as follow:

α

2
≤ µM (ã, b̃) ≤ 1− α

2
(5.21)

Let’s consider a fuzzy mathematical programming Equation 5.22 in which all coefficients and
parameters are defined as triangular fuzzy numbers. It should be noted that deterministic objective
functions and constraints remain unchanged.

min
x

c̃Tx

s.t. ãix ≥ b̃i i = 1, · · · , l
ãix = b̃i i = l + 1, · · · ,m

(5.22)

According to Zimmermann (1978) approach, a fuzzy solution is given by the intersection of all
fuzzy objective functions and constraints. A solution x is feasible in degree α if mini=1,··· ,m[µM (ãix, b̃i)] =
α. Using Equation 5.19 and 5.21, fuzzy constraints ãix ≥ b̃i and ãix = b̃i can be rewritten as follows:

Eaix2 − Ebi1

Eaix2 − Eaix1 + Ebi2 − E
bi
1

≥ α i = 1, · · · , l (5.23)

α

2
≤ Eaix2 − Ebi1

Eaix2 − Eaix1 + Ebi2 − E
bi
1

≤ 1− α

2
i = l + 1, · · · ,m (5.24)

Equation 5.23 and 5.24 can be reformulated as follows:

[(1− α)Eai2 + αEai1 ]x ≥ αEbi2 + (1− α)Ebi1 i = 1, · · · , l (5.25)

[(1− α

2
)Eai2 +

α

2
Eai1 ]x ≥ α

2
Ebi2 + (1− α

2
)Ebi1 i = l + 1, · · · ,m (5.26)

[
α

2
Eai2 + (1− α

2
)Eai1 ]x ≤ (1− α

2
)Ebi2 +

α

2
Ebi1 i = l + 1, · · · ,m (5.27)

Similarly, a feasible solution xo is α - acceptable optimal solution if and only if for all feasible
solution x, the following equation holds:

c̃tx ≥ 1
2
c̃txo (5.28)

That is, xo is a better solution in terms of objective value at least in degree 1
2 as opposed to

other feasible solution x. Equation 5.28 can be expressed as µM (c̃tx, c̃txo) ≥ 1
2 . After plugging in

to Equation 5.23, we get the following equation:

Ec
tx

1 + Ec
tx

2

2
≥ Ec

txo
1 + Ec

txo
2

2
(5.29)
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The equivalent crisp α - acceptable model of Equation 5.22 can be reformulated as follows:

min
x

EV (c̃)x

s.t. [(1− α)Eai2 + αEai1 ]x ≥ αEbi2 + (1− α)Ebi1 i = 1, · · · , l
[(1− α

2 )Eai2 + α
2E

ai
1 ]x ≥ α

2E
bi
2 + (1− α

2 )Ebi1 i = l + 1, · · · ,m
[α2E

ai
2 + (1− α

2 )Eai1 ]x ≤ (1− α
2 )Ebi2 + α

2E
bi
1 i = l + 1, · · · ,m

(5.30)

Using Equation 5.30, the equivalent crisp CLSCN problem can be rewritten as follows:

min ζ1 =
∑
i

αi ·Ri +
∑
j

fj ·Xj +
∑
l

gl · Yl +
∑
n

an ·Wn +
∑
m

bm · Zm

+
∑
i,j,t

(
ρpi + 2ρmi + ρoi

4
+ coij) ·Oijt +

∑
j,k,t

(
ϕpj + 2ϕmj + ϕoj

4
+ cujk) · Ujkt

+
∑
l,m,t

(
βpl + 2βml + βol

4
+ cplm) · Plmt +

∑
l,n,t

(
βpl + 2βml + βol

4
+ csln) · Slnt

+
∑
m,j,t

(
τpm + 2τmm + τ om

4
+ chmj) ·Hmjt +

∑
k,l,t

cqkl ·Qklt

(5.31)

min ζ2 =
∑
i

erpi + 2ermi + eroi
4

·Ri +
∑
j

expj + 2exmj + exoj
4

·Xj

+
∑
l

eypl + 2eyml + eyol
4

· Yl +
∑
m

ezpm + 2ezmm + ezom
4

· Zm

+
∑
n

ewpn + 2ewmn + ewon
4

·Wn

(5.32)

∑
j

Ujkt ≥ α · (
dmkt + dokt

2
) + (1− α) · (

dpkt + dmkt
2

) ∀k, t (5.33)

∑
l

Qklt ≥ α · (
ωmkt · dmkt−1 + ωokt · dokt−1

2
)

+ (1− α) · (
ωpkt · d

p
kt−1 + ωmkt · dmkt−1

2
) ∀k, t

(5.34)
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2
· η
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t + ηot

2
+ (1− α

2
) · η

p
t + ηmt

2
) ·
∑
k

Qklt ≤
∑
n

Slnt ∀l, t (5.35)

((1− α

2
) · η

m
t + ηot

2
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α

2
· η

p
t + ηmt

2
) ·
∑
k

Qklt ≥
∑
n

Slnt ∀l, t (5.36)

(1− α

2
· η

m
t + ηpt

2
− (1− α

2
) · η

o
t + ηmt

2
) ·
∑
k

Qklt ≤
∑
m

Plmt ∀l, t (5.37)
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(1− (1− α

2
) · η

m
t + ηpt

2
− α

2
· η

o
t + ηmt

2
) ·
∑
k

Qklt ≥
∑
m

Plmt ∀l, t (5.38)

It should be noted that Equation 5.5, 5.8 - 5.15 in the original formulation do not contain fuzzy
parameters and hence remain unchanged in this formulation.

5.3.2 The fuzzy solution approach

Fuzzy mathematical programming has been widely used to solve multi-objective problems due
to its’ capability in quantifying the satisfaction level of each objective function. The very first
fuzzy multi-objective solution approach was proposed by Zimmermann (1978), called max - min
approach. The basic idea of this approach is to introduce an auxiliary variable λ, and then maximize
λ given λ smaller than or equal to all objective values. However, this approach is not efficient and
solution may not be unique (Lai and Hwang, 1993; Li et al., 2006a). In addition, this approach
does not consider the relative importance of each objective function. Tiwari et al. (1987) proposed
an additive model in which the relative importance of each objective function is considered, but
the ratio of satisfaction level does not necessary match up with the relative importance level for
the decision makers. In this paper, we adopt the approaches that proposed by Torabi and Hassini
(2008).

In order to introduce this multi-objective aggregation function, we first define a linear mem-
bership function for each objective. This function can be viewed as the satisfaction level of each
objective function. The linear membership function for a minimization objective can be defined as
follows:

µζ1(x) =


1 for ζ1(x) ≤ ζ−1
ζ+1 −ζ1(x)

ζ+1 −ζ
−
1

for ζ−1 ≤ ζ1(x) ≤ ζ+
1

0 for ζ1(x) ≥ ζ+
1

(5.39)

Similarly, the linear membership function for a maximization objective can be defined as follows:

µζ2(x) =


1 for ζ2(x) ≥ ζ+

2
ζ2(x)−ζ−2
ζ+2 −ζ

−
2

for ζ−2 ≤ ζ2(x) ≤ ζ+
2

0 for ζ2(x) ≤ ζ−2

(5.40)

It should be noted that the linear membership Equation 5.39 is used since both ζ1 and ζ2 are
minimization functions. In this paper, there are two objective functions in the decision making
problem. However, this approach can be easily generalized to problems with more than two objec-
tive functions. Given an α value, ζ−1 and ζ+

2 are obtained by solving the multi-objective problem
as a single objective problem using only one objective function. Assuming the optimal solutions
are x∗1 and x∗2, respectively. Then, ζ+

1 and ζ−2 can be obtained by using the following expressions:
ζ+

1 = ζ1(x∗2) and ζ−2 = ζ2(x∗1).
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The aggregation function can be expressed as follows (Torabi and Hassini, 2008):

maxx,λo λ(x) = γλo + (1− γ)
∑

h θhµh(x)
s.t. λo ≤ µh(x) h = 1, 2

x ∈ F (x) and γ ∈ [0, 1]
(5.41)

where µ1(x) and µ2(x) are the linear membership functions of two objective functions and F(x)
denotes the feasible region of equivalent crisp model. In the result, λo = minh{µh(x)} indicates min-
imum satisfaction level of all objective functions. γ and θh indicate the coefficient of compensation
and the relative importance of hth objective function.

5.4 Computational experiments

To demonstrate and validate the proposed model and solution technique, numerical experiments
have been implemented and the results are shown in this section. The numerical example includes
two potential locations for manufacturing plants, four potential locations for distribution centers,
five fixed locations of customers, three potential locations for collection centers, two potential
locations for disposal centers, and twelve time periods. The details can be found in the following
literatures (Fahimnia et al., 2013; Krikke et al., 2003; Pishvaee and Torabi, 2010). To generate the
triangular fuzzy parameters, three prominent points (the most likely value, the most pessimistic
value and the most optimistic value) need to be estimated for each uncertain parameter. The
most likely value (cm) is first generated randomly using the uniform distribution. Subsequently,
the corresponding most pessimistic value (cp) and the most optimistic value (co) are determined,
without loss of generality, by multiplying 0.8 and 1.2, respectively (Selim and Ozkarahan, 2008).

Besides these uncertainties, we also consider negative environmental impact uncertainty through
CO2 equivalent emission. The most likely values for ẽri, ˜exj , ẽyl, ˜ezm and ˜ewn are set inversely
proportional to the capital investment. This is based on the assumption that the environmental
friendly facilities have higher capital investment due to additional expense on environmental friendly
machines and clean technologies. Under this assumption, the two objective functions Equation 5.31
and 5.32 become conflict with each other since the first objective function tends to minimize overall
system costs by opening economic facilities and second objective function aims to minimize negative
environmental impact by opening more expensive facilities. Equation 5.41 is then applied to not
only balance two contradictory objective functions but also provide a lower bound on the minimum
satisfaction in the objective functions.

5.4.1 Sensitivity analysis on α

In order to determine Equation 5.41, the linear membership functions should be applied for
Equation 5.31 and 5.32 by testing the range of their objective values. Table 5.1 shows the sensi-
tivity analysis on α. Wα−PIS

1 is the optimal objective value (minimum overall system costs) for
Equation 5.31 at each level of feasibility α. Similarly, Wα−PIS

2 is the optimal objective values
(minimum negative environmental impact) for Equation 5.32 at each level of feasibility α. Mean-
while, we obtain the optimal decisions xα−PIS1 and xα−PIS2 , respectively. Wα−NIS

1 and Wα−NIS
2 are

derived by plugging the optimal decision xα−PIS2 into Equation 5.31 and optimal decision xα−PIS1

into Equation 5.32. For example when α = 0.5, the minimum overall system cost is $1,635,098 and
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the maximum overall system cost is $1,695,098. Corresponding annual minimum negative environ-
mental impact is 1700 tons and annual maximum negative environmental impact is 2000 tons. As
shown in Figure 5.2, if the values are smaller than the optimal objective values ($1,635,098 and
1700 tons), then the decision maker is 100% satisfied with the solution. If the values are greater
then the worst objective values ($1,695,098 and 2000 tons), then the decision maker is 0% satis-
fied with the solution. Between the best and the worst objective values, the level of satisfaction
decreases as objective value increases since both ζ1 and ζ2 are minimization functions. The goal is
to find a balance point between two conflicting objective functions based on the decision maker’s
preference. It should be noted that greater α results in more robust solution and hence objective
values (Wα−PIS

1 , Wα−NIS
1 , Wα−PIS

2 , Wα−NIS
2 ) increase as α increases. When α increases from 0.6

to 0.7, there are tremendous increments in both overall system costs and negative environmental
impact due to network configuration upgrades. It points out the fact that the decision makers need
to not only balance the objective functions but also focus on the quality of the solutions.

Table 5.1: Sensitivity analysis on degree of feasibility (α)

α Wα−PIS
1 ($) Wα−NIS

1 ($) Wα−PIS
2 (tons) Wα−NIS

2 (tons)

0.1 1,400,372 1,690,324 1700 2400

0.2 1,451,849 1,691,516 1700 2300

0.3 1,483,329 1,692,709 1700 2200

0.4 1,534,811 1,693,903 1700 2100

0.5 1,635,098 1,695,098 1700 2000

0.6 1,656,294 1,696,362 1700 1900

0.7 1,907,492 2,047,492 2200 2600

0.8 1,908,691 2,048,691 2200 2600

0.9 2,069,891 2,259,891 2500 3100

Level of satisfaction Level of satisfaction

Objective 
values

Objective 
values00

1 1

1,635,098 1,695,098 1700 2000

19
P

29
P

Figure 5.2: Linear membership functions for ζ1 and ζ2 when α = 0.5
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5.4.2 Sensitivity analysis on θ1 and θ2

The next step is to construct the linear membership functions µζ1(x) and µζ2(x) for a given α
value. Let’s set α = 0.5, then the linear membership functions can be expressed as follows:

µζ1(x1) =
1, 695, 098− x1

60, 000
and µζ2(x2) =

2000− x2

300

Where x1 and x2 are the objective values for the crisp model. Notice that x1 ∈ [1635098, 1695098]
and x2 ∈ [1700, 2000]. The denominator of linear membership function is obtained by identifying
the range of objective values (e.g. 1,695,098 - 1,635,098 = 60,000 and 2000 - 1700 = 300). In-
tuitively, the level of satisfaction decreases as x1 and x2 increase because they are minimization
functions. The sensitivity analysis on the importance of objective functions is shown in Table 5.2.
θ1 is the importance of the first objective function ζ1 (overall system costs) and θ2 is the importance
of the second objective function ζ2 (negative environmental impact). Given the fact that θ1 + θ2

= 1, increasing θ1 while decreasing θ2 indicates the decision maker tends to put more focus on the
overall system costs and less focus on the negative environmental impact. In Table 5.2, W1 is the
optimal objective value for ζ1 and W2 is the optimal objective value for ζ2. µW1 and µW2 are the
level of satisfaction for two objective functions, respectively. λ0 is the minimum level of satisfac-
tion: λ0 = min(µW1 , µW2). When θ1 = 0.9 and θ2 = 0.1, corresponding µW1 = 1 and µW2 = 0. It
indicates that the decision maker is 100% satisfied with the overall system costs and 0% satisfied
with the negative environmental impact. This parameter setup makes the solution indifferent to
traditional supply chain network system because it does not consider environmental impact and
only care about the overall system costs. As θ1 decreases, the decision makers put more and more
focus on the environmental impact, therefore, W1 increases and W2 decreases. Notice that µW1 ,
µW2 and λ0 are insensitive to parameter changes in θ1 and θ2. Apparently, minimum satisfaction
λ0 is fairly low across all θ1 and θ2 combinations and this motivates us to investigate how γ affect
the model solution.

Table 5.2: Sensitivity analysis on the importance of objective functions (θ1 and θ2)

W1 ($) W2 (tons) µW1 µW2 λ0

θ1 = 0.1, θ2 = 0.9 1,675,098 1800 1/3 2/3 1/3

θ1 = 0.2, θ2 = 0.8 1,675,098 1800 1/3 2/3 1/3

θ1 = 0.3, θ2 = 0.7 1,675,098 1800 1/3 2/3 1/3

θ1 = 0.4, θ2 = 0.6 1,675,098 1800 1/3 2/3 1/3

θ1 = 0.5, θ2 = 0.5 1,655,098 1900 2/3 1/3 1/3

θ1 = 0.6, θ2 = 0.4 1,655,098 1900 2/3 1/3 1/3

θ1 = 0.7, θ2 = 0.3 1,655,098 1900 2/3 1/3 1/3

θ1 = 0.8, θ2 = 0.2 1,655,098 1900 2/3 1/3 1/3

θ1 = 0.9, θ2 = 0.1 1,635,098 2000 1 0 0

Degree of feasibility (α) is fixed at 0.5 and coefficient of compensation (γ) is fixed at 0.4
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5.4.3 Sensitivity analysis on γ

Table 5.3 includes the sensitivity analysis on the coefficient of compensation (γ). We fix θ1 = 0.8,
θ2 = 0.2, α = 0.9 and only vary γ to investigate it’s impact on the solution. The corresponding
linear membership functions are shown as follows:

µζ1(x1) =
2, 259, 891− x1

190, 000
and µζ2(x2) =

3100− x2

600

By comparing Table 5.3 and 5.2, it can be found out that the minimum satisfaction level (λ0)
is more sensitive to the coefficient of compensation (γ) than the importance of objective functions
(θ1 and θ2). In Table 5.3, λ0 takes value 1

3 for the most cases which indicates that the model pays
more attention to the objective values than the minimum satisfaction levels. In Table 5.3, λ0 takes
values such as 0, 1/3, 0.5, and 0.526 which are more diverse. Recall two objective functions are
conflicting with each other: the first objective function is trying to build facilities with small fixed
cost and the second objective function is aiming to build facilities with large fixed cost as they have
better sewage and exhaust gas treatment systems. Therefore, solution with minimum satisfaction
level greater than 0.5 is good. When γ = 0.1 or γ = 0.2, the solution is indifferent to the traditional
supply chain network system because the decision makers only care about the overall system costs
and ignore negative environmental impact completely. Favorable solutions in Table 5.3 will be γ
between 0.7 to 0.9 since solutions are balance (µW1 and µW2 are close to each other) and minimum
satisfaction level is above 0.5.

Table 5.3: Sensitivity analysis on the coefficient of compensation (γ)

W1 ($) W2 (tons) µW1 µW2 λ0

γ = 0.1 2,069,891 3100 1 0 0

γ = 0.2 2,069,891 3100 1 0 0

γ = 0.3 2,109,891 2900 0.789 1/3 1/3

γ = 0.4 2,139,891 2800 0.632 0.5 0.5

γ = 0.5 2,139,891 2800 0.632 0.5 0.5

γ = 0.6 2,139,891 2800 0.632 0.5 0.5

γ = 0.7 2,159,891 2700 0.526 2/3 0.526

γ = 0.8 2,159,891 2700 0.526 2/3 0.526

γ = 0.9 2,159,891 2700 0.526 2/3 0.526

Degree of feasibility (α) is fixed at 0.9 and importance of objective functions (θ1 and θ2) are fixed at 0.8 and 0.2, respectively

5.5 Conclusions

Supply chain design is among the most critical decisions in the manufacturing production.
Recently, more attention has been paid to the closed-loop supply chain systems as they provide
additional profits by collecting defective/used units and remanufacturing them for consumption
which recovers the value of production. In the traditional supply chain systems, flows start from
suppliers, going through manufacturing plants, distribution centers and end at customers. However,
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closed-loop supply chain systems extend it by collecting defective/used products from customers,
classifying them based on the condition, remanufacturing the recoverable units and sending recov-
ered products back to the customers.

Closed-loop supply chain network design includes many strategic decisions such as network
configuration and hence faces significant amount of uncertainties. In this paper, we consider the
uncertainties in demand, return, scrap rate, manufacturing costs and environmental impacts. To
copy with those uncertain parameters, a multi-objective fuzzy programming model is proposed.
Two conflicting objective functions are minimization of overall system costs and minimization of
negative environmental impact. We apply the solution approach proposed by Jimenez et al. to
create the crisp model and then integrate different objective functions using the approach proposed
by Jiménez et al. (2007) and Torabi and Hassini (2008). Sensitivity analyses have been conducted
on various parameters such as the degree of feasibility (α), the importance of objective functions
(θ1, θ2) and coefficient of compensation (γ). It can be observed that: (1) different α values will
provide different linear membership functions; (2) λ0 is insensitive to the combinations of θ1 and
θ2; (3) By varying γ, we are able to find a balance solution.

The research is subject to a few limitations which suggest some future research directions: First,
time complexity is not addressed in this paper, however, this aspect is really important for large
scaled problems and hence developing valid inequalities and heuristic algorithms can be appealing.
Second, an efficient approach to capture the statistical properties of uncertain parameters and
convert into crisp models is desired. Last but not the least, the choice of raw materials and
collection technologies play a big role in environmental impact, therefore considering uncertainties
in those two components are also crucial.
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CHAPTER 6. GENERAL CONCLUSIONS

A key component of a manufacturing firm is the robust design and efficient operation of its
supply chain. However, supply chain design and operational planning have significant uncertainties,
which complicate the planning and decision making processes. This dissertation, which consists
of four manuscripts, aims to contribute to decision making under uncertainty for network design,
production planning and closed-loop supply chain. The major contributions, limitations, and future
works are discussed in this section.

The efficiency and cost of freight transportation are among important criteria to evaluate the
overall performance of a supply chain network. In the first paper, we studied a relay network
design problem. The major motivations are: First, improving long haul truck drivers’ work-life
balance and safety; Second, reducing deadhead cost. The contributions are: (1) We develop a
novel capacitated, hub design model as a mixed-integer linear program. Unlike other relay network
design systems, long distance shipments and point to point delivery are not allowed. (2) We
propose a two-stage stochastic programming model with uncertain demand. Robustness of, and
bottlenecks in, the deterministic system have been examined (3) Various preprocessing cuts and
valid inequalities have been generated and tested. Results show that valid inequalities enhance
computational performance when the size of problems are small to medium. Our study is subject
to a few limitations, which suggest future research directions: strong valid inequalities should be
developed to improve the computational performance of L-shaped method. Instead of using 10
scenarios to approximate the demand uncertainty, Sample Average Approximation (SAA) should
be used and followed by various stability tests. Last but not least, heuristics can be used when
solving large scale problem instances.

Besides freight shipment, production is another challenge in the supply chain management.
Overproduction creates unnecessary inventory cost while underproduction results in not satisfying
demands and thus losing customers. In the second paper, we studied a lot-sizing and scheduling
problem, which included determining batch sizes and production sequences. Due to the fact that
production decisions can be revised at the beginning of each time period, a multi-stage stochastic
programming model has been developed. The contributions are: First, we propose a novel multi-
stage stochastic programming formulation for lot-sizing and scheduling problems with demand
uncertainty. Second, moment matching method followed by Fast Forward Selection approach has
been utilized to generate and identify the most representative subset. The generated scenarios
perfectly match the statistical properties of uncertain parameters. Third, several stability tests have
been conducted in order to determine a good scenario sample size after scenario reduction process.
We quantitatively measure the difference in the objective values between the two-stage and multi-
stage stochastic programming approaches. Given 20 hours computational time, the objective value
of multi-stage stochastic programming model is roughly 10% lower then the one in the two-stage
stochastic programming model, which indicates the multi-stage stochastic programming model
outperforms the two-stage stochastic programming model. However, our research has following
limitations. Firstly, demand is assumed to be independent over time which can be questionable in
cases where current demand heavily depends on the historical data. Secondly, multiple uncertain
factors can be studied in our future works. Thirdly, we subjectively determine the scenario sample
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size is sufficient if the changes in the objective values is less than 5%. Last but not least, 10%
drop in the objective value may not be a huge improvement in some industrial cases given 20 hours
computational time.

Our first two manuscripts mainly focus on the stochastic programming approach which is a pow-
erful tool when there is sufficient data and computation resource. However, robust optimization is
more suitable tool for cases where we only have limited amount of data or the decision makers con-
cern more about the worst case performance. In addition, scenario based stochastic programming
approach requires large sample size in order to have a good representation of original distribution
which can be computational expensive. In the third paper, we studied a hybrid stochastic and
robust optimization approach for lot-sizing and scheduling problems. We assumed that there was
not sufficient historical data for demand and hence robust optimization was applied. On the other
hand, we assumed that there was enough historical data to create a reliable distribution for overtime
processing cost, therefore, scenario based stochastic programming was adopted. Various sensitivity
analyses have been carried out and the results show that (1) The value of budget provides a trade-off
between level of constraint violation and degree of conservatism. Concretely, larger budget provides
more protection to the constraints but corresponding solution becomes more conservative. On the
other hand, smaller budget provides less constraint protection and corresponding solution is less
conservative. (2) The objective value of the deterministic model can be either higher or lower than
the objective value of the stochastic model. However, as we increase budget, the objective value of
the deterministic model becomes much higher than the objective value of the hybrid model, which
indicates the importance of considering uncertainties and hybrid formulation technique. One inter-
esting future research direction is to develop strong cuts to improve the computational performance
since it has been proven that lot-sizing and scheduling problems are NP-hard.

Supply chain management involves selection of suppliers, facility locations, production, move-
ments as well as storage of goods. By integrating the network design and production planning, we
studied a closed-loop supply chain problem. Because opening warehouses, distribution centers, and
manufacturing plants are long term decisions, a lot of parameters in the supply chain problems have
uncertainties. Fuzzy programming is preferred when there are multiple uncertain parameters since
model complexity for fuzzy programming approach does not depend on the number of uncertain
parameters. In the fourth paper, we proposed a fuzzy programming formulation for closed-loop
supply chain problems. The main difference between traditional supply chain and closed-loop sup-
ply chain is the consideration of environmental impacts. We studied uncertain parameters such
as demand, return, scrap rate, manufacturing costs and negative environmental impacts. Two ob-
jective functions minimization of overall system costs and minimization of negative environmental
impacts. An aggregation function has been applied to integrate two conflicting objective functions.
We observed that: (1) different α values will provide different linear membership functions; (2) λ0 is
insensitive to the combination of θ1 and θ2; (3) by varying γ, we are able to find a balance solution.
One promising future work is to address the computational complexity of closed-loop supply chain
problems.
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Jiménez, M., Arenas, M., Bilbao, A., Rodrı, M. V., et al. (2007). Linear programming with
fuzzy parameters: an interactive method resolution. European Journal of Operational Research,
177(3):1599–1609.

Jindal, A. and Sangwan, K. S. (2014). Closed loop supply chain network design and optimiza-
tion using fuzzy mixed integer linear programming model. International Journal of Production
Research, 52(14):4156–4173.



www.manaraa.com

85

Kaczmarczyk, W. (2011). Proportional lot sizing and scheduling problem with identical parallel
machines. International Journal of Production Research, 49(9):2605–2623.

Kanyalkar, A. P. and Adil, G. K. (2010). A robust optimization model for aggregate and detailed
planning of a multi-site procurement-production-distribution system. International Journal of
Production Research, 48(3):635–656.

Karimi, B., Ghomi, S. F., and Wilson, J. M. (2003). The capacitated lot sizing problem: a review
of models and algorithms. Omega, 31(5):365–378.

Kaut, M., Vladimirou, H., Wallace, S. W., and Zenios, S. A. (2007). Stability analysis of portfolio
management with conditional value-at-risk. Quantitative Finance, 7(4):397–409.
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